Subgroup ($H$) information
| Description: | $C_6^2$ | 
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $\langle(5,7), (1,2,3), (8,15)(9,10)(11,13)(12,14), (9,12,13)(10,14,11)\rangle$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Ambient group ($G$) information
| Description: | $D_6.S_4^2$ | 
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^3\times A_4^2.C_2^2\times S_3$ | 
| $\operatorname{Aut}(H)$ | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $24$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $-4$ | 
| Projective image | $S_3\times S_4^2$ | 
