Properties

Label 6912.ia.192.h1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{6} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(5,7), (1,2,3), (4,5,7), (8,15)(9,10)(11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times \GL(2,3)$
Normalizer:$S_3^2\times \GL(2,3)$
Normal closure:$C_6\times S_4$
Core:$C_6$
Minimal over-subgroups:$C_6\times S_4$$C_3^2\times D_6$$S_3\times D_6$$C_6\times D_6$$S_3\times D_6$$S_3\times C_{12}$$C_6.D_6$
Maximal under-subgroups:$C_3\times C_6$$C_3\times S_3$$C_2\times C_6$$D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-24$
Projective image$S_3\times S_4^2$