Properties

Label 6912.hm.4.d1
Order $ 2^{6} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(Q_8\times C_3^2):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(8,13)(9,12), (1,3,5)(2,4,6)(7,12,10,14,9,11)(8,13), (7,10)(8,12)(9,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_2^4:\He_3.C_2^4$
$W$$S_3\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_2\times D_6^2):S_4$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$Q_8:A_4:S_3^2$$C_3^2:C_2\wr S_4$$C_3^2:C_2\wr S_4$
Maximal under-subgroups:$C_3^2\times Q_8:A_4$$(C_3\times Q_8):S_4$$C_3\times Q_8:S_4$$C_3\times Q_8:S_4$$(C_6\times D_{12}):C_2^2$$C_6^2:D_6$$C_3^2:\GL(2,3)$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image$D_6^2:S_4$