Properties

Label 6912.hm.8.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times Q_8:A_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,13)(9,12), (1,3,5)(2,4,6)(7,12,10,14,9,11)(8,13), (7,10)(8,12)(9,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_3:S_3.C_2^6.S_3^3$
$W$$C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$(C_2\times D_6^2):S_4$
Complements:$C_2^3$ $C_2^3$
Minimal over-subgroups:$D_4:C_6^2:C_6$$C_3^2:C_2\wr A_4$$C_3^2\times C_2^3:S_4$$(Q_8\times C_3^2):S_4$$(C_2\times C_6^2):S_4$
Maximal under-subgroups:$C_3\times Q_8:A_4$$D_4:C_6^2$$C_3\times Q_8:A_4$$C_3\times Q_8:A_4$$C_3\times Q_8:A_4$$C_6^2:C_6$$C_6^2:C_6$$C_3^2\times \SL(2,3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-8$
Projective image$D_6^2:S_4$