Subgroup ($H$) information
| Description: | $Q_8:A_4:S_3^2$ |
| Order: | \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| Index: | \(2\) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\langle(8,13)(9,12), (1,3,5)(2,4,6)(7,12,10,14,9,11)(8,13), (7,10)(8,12)(9,13) \!\cdots\! \rangle$
|
| Derived length: | $4$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $(C_2\times D_6^2):S_4$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_2^4\times A_4).C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_3^5:D_6$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \) |
| $W$ | $D_6^2:S_4$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $D_6^2:S_4$ |