Properties

Label 688128.bd.12.A
Order $ 2^{13} \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}.C_{14}$
Order: \(57344\)\(\medspace = 2^{13} \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(5,8)(6,7)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27), (1,2)(3,4)(5,6)(7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metabelian (hence solvable), and an A-group. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.(C_7\times S_4)$
Order: \(688128\)\(\medspace = 2^{15} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(28901376\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $F_5^3$, of order \(305892163584\)\(\medspace = 2^{19} \cdot 3^{5} \cdot 7^{4} \)
$W$$C_2^{12}.C_{14}$, of order \(57344\)\(\medspace = 2^{13} \cdot 7 \)

Related subgroups

Centralizer: not computed
Normalizer:$\ASigmaL(1,16384)$
Normal closure:$C_2^7.C_2\wr C_7$
Core:$C_2^{12}:C_7$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^{12}.(C_7\times S_4)$