Properties

Label 688128.bd
Order \( 2^{15} \cdot 3 \cdot 7 \)
Exponent \( 2^{2} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 7 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{2} \cdot 7^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3 \cdot 7 \)
Perm deg. $28$
Trans deg. $28$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,12,18,28,6,14,24,2,9,17,25,5,15,23,3,10,20,26,8,16,22,4,11,19,27,7,13,21), (1,3,4,2)(5,6,8,7)(9,10,12,11)(14,15)(17,20)(21,22,24,23)(25,27,28,26) >;
 
Copy content gap:G := Group( (1,12,18,28,6,14,24,2,9,17,25,5,15,23,3,10,20,26,8,16,22,4,11,19,27,7,13,21), (1,3,4,2)(5,6,8,7)(9,10,12,11)(14,15)(17,20)(21,22,24,23)(25,27,28,26) );
 
Copy content sage:G = PermutationGroup(['(1,12,18,28,6,14,24,2,9,17,25,5,15,23,3,10,20,26,8,16,22,4,11,19,27,7,13,21)', '(1,3,4,2)(5,6,8,7)(9,10,12,11)(14,15)(17,20)(21,22,24,23)(25,27,28,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(60753438591187049165535204105071207394565485272537599119512068040592900343404288056997618358422850233637804285470955981629344936382804187895754829405795168547378749956254340338315567538378336815416376229193595324281622202242920186650661331698253252900625683112142617797863680403417404060639018091023132313208247214791131381760,688128)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14; n = G.15; o = G.16; p = G.17;
 

Group information

Description:$C_2^{12}.(C_7\times S_4)$
Order: \(688128\)\(\medspace = 2^{15} \cdot 3 \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(28901376\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 7^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$, $C_7$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 7 14 21 28
Elements 1 16767 32768 48768 24576 221184 196608 147456 688128
Conjugacy classes   1 401 1 19 6 12 6 6 452
Divisions 1 401 1 19 1 2 1 1 427
Autjugacy classes 1 24 1 5 1 2 1 1 36

Minimal presentations

Permutation degree:$28$
Transitive degree:$28$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 21 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid b^{3}=c^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, -2, -7, -3, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 34, 7376352, 6352460, 216718, 34172043, 9356276, 708529, 19902754, 23279991, 2930498, 66616205, 21638506, 2541675, 16333470, 2551502, 767590, 83423767, 27531864, 5061689, 66374162, 50675461, 1242555, 20698869, 6186836, 1315843, 68416204, 38072292, 269324, 556931, 41597668, 4329, 45156942, 51570821, 5123047, 27409045, 27559002, 9858245, 78493604, 49871146, 880563, 66042159, 9019280, 10107025, 152574676, 12040929, 13403003]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(60753438591187049165535204105071207394565485272537599119512068040592900343404288056997618358422850233637804285470955981629344936382804187895754829405795168547378749956254340338315567538378336815416376229193595324281622202242920186650661331698253252900625683112142617797863680403417404060639018091023132313208247214791131381760,688128); a := G.1; b := G.3; c := G.4; d := G.5; e := G.6; f := G.7; g := G.8; h := G.9; i := G.10; j := G.11; k := G.12; l := G.13; m := G.14; n := G.15; o := G.16; p := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(60753438591187049165535204105071207394565485272537599119512068040592900343404288056997618358422850233637804285470955981629344936382804187895754829405795168547378749956254340338315567538378336815416376229193595324281622202242920186650661331698253252900625683112142617797863680403417404060639018091023132313208247214791131381760,688128)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14; n = G.15; o = G.16; p = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(60753438591187049165535204105071207394565485272537599119512068040592900343404288056997618358422850233637804285470955981629344936382804187895754829405795168547378749956254340338315567538378336815416376229193595324281622202242920186650661331698253252900625683112142617797863680403417404060639018091023132313208247214791131381760,688128)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14; n = G.15; o = G.16; p = G.17;
 
Permutation group:Degree $28$ $\langle(1,12,18,28,6,14,24,2,9,17,25,5,15,23,3,10,20,26,8,16,22,4,11,19,27,7,13,21), (1,3,4,2)(5,6,8,7)(9,10,12,11)(14,15)(17,20)(21,22,24,23)(25,27,28,26)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,12,18,28,6,14,24,2,9,17,25,5,15,23,3,10,20,26,8,16,22,4,11,19,27,7,13,21), (1,3,4,2)(5,6,8,7)(9,10,12,11)(14,15)(17,20)(21,22,24,23)(25,27,28,26) >;
 
Copy content gap:G := Group( (1,12,18,28,6,14,24,2,9,17,25,5,15,23,3,10,20,26,8,16,22,4,11,19,27,7,13,21), (1,3,4,2)(5,6,8,7)(9,10,12,11)(14,15)(17,20)(21,22,24,23)(25,27,28,26) );
 
Copy content sage:G = PermutationGroup(['(1,12,18,28,6,14,24,2,9,17,25,5,15,23,3,10,20,26,8,16,22,4,11,19,27,7,13,21)', '(1,3,4,2)(5,6,8,7)(9,10,12,11)(14,15)(17,20)(21,22,24,23)(25,27,28,26)'])
 
Transitive group: 28T1142 42T1805 42T1806 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^{12}:C_7)$ . $S_4$ $C_2^{14}$ . $(S_3\times C_7)$ $C_2^{12}$ . $(C_7\times S_4)$ $(C_2^{14}.C_{21})$ . $C_2$ all 9

Elements of the group are displayed as permutations of degree 28.

Homology

Abelianization: $C_{14} \simeq C_{2} \times C_{7}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 14 normal subgroups (10 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_2^{12}.(C_7\times S_4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^{14}.C_3$ $G/G' \simeq$ $C_{14}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^{12}.(C_7\times S_4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{14}$ $G/\operatorname{Fit} \simeq$ $S_3\times C_7$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^{12}.(C_7\times S_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^{14}$ $G/\operatorname{soc} \simeq$ $S_3\times C_7$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2^6.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_2^{12}.(C_7\times S_4)$ $\rhd$ $C_2^{14}.C_3$ $\rhd$ $C_2^{14}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^{12}.(C_7\times S_4)$ $\rhd$ $C_2^{14}.C_{21}$ $\rhd$ $C_2^{14}.C_3$ $\rhd$ $C_2^{14}$ $\rhd$ $C_2^8$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^{12}.(C_7\times S_4)$ $\rhd$ $C_2^{14}.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $452 \times 452$ character table is not available for this group.

Rational character table

The $427 \times 427$ rational character table is not available for this group.