Properties

Label 57344.v
Order \( 2^{13} \cdot 7 \)
Exponent \( 2 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 7 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{5} \cdot 7^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \cdot 3^{5} \cdot 7^{3} \)
Perm deg. $28$
Trans deg. $28$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (17,18)(19,20)(25,26)(27,28), (1,7,10,14,18,24,26,3,5,11,15,20,22,27)(2,8,9,13,17,23,25,4,6,12,16,19,21,28), (17,18)(19,20)(21,23)(22,24)(25,27)(26,28) >;
 
Copy content gap:G := Group( (17,18)(19,20)(25,26)(27,28), (1,7,10,14,18,24,26,3,5,11,15,20,22,27)(2,8,9,13,17,23,25,4,6,12,16,19,21,28), (17,18)(19,20)(21,23)(22,24)(25,27)(26,28) );
 
Copy content sage:G = PermutationGroup(['(17,18)(19,20)(25,26)(27,28)', '(1,7,10,14,18,24,26,3,5,11,15,20,22,27)(2,8,9,13,17,23,25,4,6,12,16,19,21,28)', '(17,18)(19,20)(21,23)(22,24)(25,27)(26,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(7070838259656304543051282919970378884895335758455355861418613743392256369376526342485777763718007161097884316528730877750665758446458543504824602121451356131328,57344)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14;
 

Group information

Description:$C_2^{12}.C_{14}$
Order: \(57344\)\(\medspace = 2^{13} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$F_5^3$, of order \(305892163584\)\(\medspace = 2^{19} \cdot 3^{5} \cdot 7^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_7$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metabelian (hence solvable), and an A-group. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 7 14
Elements 1 8191 24576 24576 57344
Conjugacy classes   1 1171 6 6 1184
Divisions 1 1171 1 1 1174
Autjugacy classes 1 5 1 1 8

Minimal presentations

Permutation degree:$28$
Transitive degree:$28$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid a^{14}=b^{2}=c^{2}=d^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, -2, -7, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 28, 38222, 20890, 1233235, 77241, 1665024, 865848, 4765157, 2063899, 2289874, 2416798, 4669511, 2828693, 10592, 118210, 3332009, 1536663, 733050, 401040, 2135627, 3926689, 9154976, 1940328, 5540149, 2706983]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14]); AssignNames(~G, ["a", "a2", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(7070838259656304543051282919970378884895335758455355861418613743392256369376526342485777763718007161097884316528730877750665758446458543504824602121451356131328,57344); a := G.1; b := G.3; c := G.4; d := G.5; e := G.6; f := G.7; g := G.8; h := G.9; i := G.10; j := G.11; k := G.12; l := G.13; m := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(7070838259656304543051282919970378884895335758455355861418613743392256369376526342485777763718007161097884316528730877750665758446458543504824602121451356131328,57344)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(7070838259656304543051282919970378884895335758455355861418613743392256369376526342485777763718007161097884316528730877750665758446458543504824602121451356131328,57344)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14;
 
Permutation group:Degree $28$ $\langle(17,18)(19,20)(25,26)(27,28), (1,7,10,14,18,24,26,3,5,11,15,20,22,27)(2,8,9,13,17,23,25,4,6,12,16,19,21,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (17,18)(19,20)(25,26)(27,28), (1,7,10,14,18,24,26,3,5,11,15,20,22,27)(2,8,9,13,17,23,25,4,6,12,16,19,21,28), (17,18)(19,20)(21,23)(22,24)(25,27)(26,28) >;
 
Copy content gap:G := Group( (17,18)(19,20)(25,26)(27,28), (1,7,10,14,18,24,26,3,5,11,15,20,22,27)(2,8,9,13,17,23,25,4,6,12,16,19,21,28), (17,18)(19,20)(21,23)(22,24)(25,27)(26,28) );
 
Copy content sage:G = PermutationGroup(['(17,18)(19,20)(25,26)(27,28)', '(1,7,10,14,18,24,26,3,5,11,15,20,22,27)(2,8,9,13,17,23,25,4,6,12,16,19,21,28)', '(17,18)(19,20)(21,23)(22,24)(25,27)(26,28)'])
 
Transitive group: 28T591 more information
Direct product: $C_2$ $\, \times\, $ $(C_2^{12}:C_7)$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{10}$ . $F_8$ $C_2^{12}$ . $C_{14}$ $C_2^9$ . $(C_2\times F_8)$ $C_2$ . $(C_2^9.F_8)$ all 11

Elements of the group are displayed as permutations of degree 28.

Homology

Abelianization: $C_{14} \simeq C_{2} \times C_{7}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{12}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 244 normal subgroups (6 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^9.F_8$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^{12}$ $G/G' \simeq$ $C_{14}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^{12}.C_{14}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{13}$ $G/\operatorname{Fit} \simeq$ $C_7$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^{12}.C_{14}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^{13}$ $G/\operatorname{soc} \simeq$ $C_7$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{13}$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_2^{12}.C_{14}$ $\rhd$ $C_2^{12}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^{12}.C_{14}$ $\rhd$ $C_2^{12}:C_7$ $\rhd$ $C_2^{12}$ $\rhd$ $C_2^9$ $\rhd$ $C_2^6$ $\rhd$ $C_2^3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^{12}.C_{14}$ $\rhd$ $C_2^{12}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 9 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1184 \times 1184$ character table is not available for this group.

Rational character table

The $1174 \times 1174$ rational character table is not available for this group.