Properties

Label 688.32.43.a1.a1
Order $ 2^{4} $
Index $ 43 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(43\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{43}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_4:D_{43}$
Order: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Exponent: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{86}.C_{42}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_4:C_2$
Normal closure:$D_4:D_{43}$
Core:$D_4$
Minimal over-subgroups:$D_4:D_{43}$
Maximal under-subgroups:$D_4$$D_4$$D_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$Q_8$

Other information

Number of subgroups in this conjugacy class$43$
Möbius function$-1$
Projective image$C_2\times D_{86}$