Properties

Label 688.32.86.a1.a1
Order $ 2^{3} $
Index $ 2 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(86\)\(\medspace = 2 \cdot 43 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, c^{43}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $D_4:D_{43}$
Order: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Exponent: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{43}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Automorphism Group: $F_{43}$, of order \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
Outer Automorphisms: $C_{21}$, of order \(21\)\(\medspace = 3 \cdot 7 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{86}.C_{42}.C_2^3$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3612\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 43 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{43}:C_4$
Normalizer:$D_4:D_{43}$
Complements:$D_{43}$
Minimal over-subgroups:$D_4\times C_{43}$$D_4:C_2$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_4$

Other information

Möbius function$43$
Projective image$C_2\times D_{86}$