Properties

Label 679477248.cl.1327104._.B
Order $ 2^{9} $
Index $ 2^{14} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(19,20)(21,22)(23,24)(25,26)(27,28)(35,36), (3,4)(13,14)(15,16)(17,18)(25,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^9.(A_4^2\wr C_2.C_2^2.D_4)$
Order: \(679477248\)\(\medspace = 2^{23} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $A_4^2\wr C_2.C_2^2.D_4$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism Group: $C_2^8.S_3\wr D_4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(10871635968\)\(\medspace = 2^{27} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\GL(9,2)$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed