-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '679477248.cl', 'ambient_counter': 64, 'ambient_order': 679477248, 'ambient_tex': 'C_2^9.(A_4^2\\wr C_2.C_2^2.D_4)', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 512, 'counter': 896, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '679477248.cl.1327104._.B', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '1327104.B', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '1327104.d', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': None, 'quotient_metabelian': False, 'quotient_nilpotent': False, 'quotient_order': 1327104, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': False, 'quotient_tex': 'A_4^2\\wr C_2.C_2^2.D_4', 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '512.10494213', 'subgroup_hash': None, 'subgroup_order': 512, 'subgroup_tex': 'C_2^9', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '679477248.cl', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [357001369764481, 8683317618811912398747520558414833961, 39921961, 8222849558584435296148908510033846, 10888895302556736146153477166, 10333147966386160440927907255781302272000, 1313901393846, 8852666374451254581175978833846, 6267305646], 'label': '679477248.cl.1327104._.B', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '1327104.B', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '1327104._.B', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '512.10494213', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 0, 'aut_exponent': 24624517680, 'aut_gen_orders': [2, 9], 'aut_gens': [[1, 2, 4, 8, 16, 32, 64, 128, 256], [3, 2, 4, 8, 16, 32, 64, 128, 256], [256, 1, 2, 4, 8, 16, 32, 64, 128]], 'aut_group': None, 'aut_hash': 3475559796451453123, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 699612310033197642547200, 'aut_permdeg': 511, 'aut_perms': [1329076649454784293232248790960488187618561193564925218031901523314975154529473956940420952253844366423978751423927126247076050127336432360744865853718082268482031259757922292929237842936999486432987316818686408739072677074403800929685525647864973396898530364501473510597117621803991726186749860878524704290262705249932695244466526132364600401798521151415015038001286207153354390081319867530635341924049179087287563167341200591662666928415813077812212321054010761042273106599133015383829033754630111258493885629483424318179881784448931366594602302095402012352490356683852911724588229431649120881754182120349985967313465980975720152778314679815971451751705250055271764253860631449157385418935219547285308406482410974137014089035616642561144796456493500989736313844340588895225885205617209294210565638760728636501894662672934505783152285472888670085700094873230265730044326257198638321439247977211694333743392716971813516561055251468403694283989757018016992289013431151649192433009216538344717081735199177885256136451241079574638807091310732220984435364827027594133935075814536440092897563524629010769461483354436959728786592208862146318479640410018435296633194880, 2611172730145100718889023605307176295967771600268248382138468458119253215040762997646755240697999221097733673287174724163642622885748213287507658251385433783284717060664769872640124641021778423384948590324921329631715680152915268441432544249438788941865721903856347544912326246395849665448933610618366071506177790043269677208946266260028184186950575051648111539394657806926643007633953391094852801047535664965141916075755307473809745646824210841851233417720683925309753506363917163485791179336441049525143597157219057003198328699405376278641665904611127526907385224468968486297888700670667601583946891189044957630600514328122887636005109170964049215666062727735365263108633827429677027285854462099727705509624470795507683031261814422435888988956884612425906413530855627776540140060980875933066068554633181690611433583489377158737290684886888911669704317404464531320184076371721847694296057616836083668638781031665262795887798951191749332193893912100935148049638280073627214077418622030341482767851942689942105497083255493628316126249446101752183661138234502205747123475159185088495031232207253442698490050604558518244568221203973744318455010023530304151777433], 'aut_phi_ratio': 2.7328605860671783e+21, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 511, 1]], 'aut_supersolvable': False, 'aut_tex': '\\GL(9,2)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 24624517680, 'autcent_group': None, 'autcent_hash': 3475559796451453123, 'autcent_nilpotent': False, 'autcent_order': 699612310033197642547200, 'autcent_solvable': False, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '\\GL(9,2)', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 511]], 'center_label': '512.10494213', 'center_order': 512, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 9, 'conjugacy_classes_known': False, 'counter': 10494213, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 9]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 511]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [9], 'factors_of_aut_order': [2, 3, 5, 7, 17, 31, 73, 127], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '512.10494213', 'hash': 10494213, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1, 1, 1, 1, 1, 1, 1, 1], 'inner_gens': [[1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256], [1, 2, 4, 8, 16, 32, 64, 128, 256]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': None, 'irrep_stats': [[1, 512]], 'label': '512.10494213', 'linC_count': None, 'linC_degree': 9, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^9', 'ngens': 9, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 512, 'number_divisions': 512, 'number_normal_subgroups': 8283458, 'number_subgroup_autclasses': 10, 'number_subgroup_classes': 8283458, 'number_subgroups': 8283458, 'old_label': None, 'order': 512, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 511]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 24624517680, 'outer_gen_orders': [2, 9], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2, 4, 8, 16, 32, 64, 128, 256], [256, 1, 2, 4, 8, 16, 32, 64, 128]], 'outer_group': None, 'outer_hash': 3475559796451453123, 'outer_nilpotent': False, 'outer_order': 699612310033197642547200, 'outer_permdeg': 511, 'outer_perms': [1329076649454784293232248790960488187618561193564925218031901523314975154529473956940420952253844366423978751423927126247076050127336432360744865853718082268482031259757922292929237842936999486432987316818686408739072677074403800929685525647864973396898530364501473510597117621803991726186749860878524704290262705249932695244466526132364600401798521151415015038001286207153354390081319867530635341924049179087287563167341200591662666928415813077812212321054010761042273106599133015383829033754630111258493885629483424318179881784448931366594602302095402012352490356683852911724588229431649120881754182120349985967313465980975720152778314679815971451751705250055271764253860631449157385418935219547285308406482410974137014089035616642561144796456493500989736313844340588895225885205617209294210565638760728636501894662672934505783152285472888670085700094873230265730044326257198638321439247977211694333743392716971813516561055251468403694283989757018016992289013431151649192433009216538344717081735199177885256136451241079574638807091310732220984435364827027594133935075814536440092897563524629010769461483354436959728786592208862146318479640410018435296633194880, 2611172730145100718889023605307176295967771600268248382138468458119253215040762997646755240697999221097733673287174724163642622885748213287507658251385433783284717060664769872640124641021778423384948590324921329631715680152915268441432544249438788941865721903856347544912326246395849665448933610618366071506177790043269677208946266260028184186950575051648111539394657806926643007633953391094852801047535664965141916075755307473809745646824210841851233417720683925309753506363917163485791179336441049525143597157219057003198328699405376278641665904611127526907385224468968486297888700670667601583946891189044957630600514328122887636005109170964049215666062727735365263108633827429677027285854462099727705509624470795507683031261814422435888988956884612425906413530855627776540140060980875933066068554633181690611433583489377158737290684886888911669704317404464531320184076371721847694296057616836083668638781031665262795887798951191749332193893912100935148049638280073627214077418622030341482767851942689942105497083255493628316126249446101752183661138234502205747123475159185088495031232207253442698490050604558518244568221203973744318455010023530304151777433], 'outer_solvable': False, 'outer_supersolvable': False, 'outer_tex': '\\GL(9,2)', 'pc_rank': None, 'perfect': False, 'permutation_degree': 18, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2, 2, 2, 2, 2, 2], 'quasisimple': False, 'rank': 9, 'rational': True, 'rational_characters_known': False, 'ratrep_stats': [[1, 512]], 'representations': {'PC': {'code': '0', 'gens': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'pres': [9, -2, 2, 2, 2, 2, 2, 2, 2, 2]}, 'Perm': {'d': 18, 'gens': [355687428096000, 1307674368000, 6227020800, 39916800, 362880, 5040, 120, 6, 1]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2, 2, 2, 2, 2, 2], 'solvability_type': 2, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^9', 'transitive_degree': 512, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.10', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[308151428397909399030493231489112785481815, 180405150131754582660457869545722951390679, 276624407170631188039297504953431177025847], [212836187003233842757993196120928037529039, 170072002165368453241950292230909276197161, 234119558627831033880157877332877108249033], [223169334969619987687659723948452287446070, 180405150131754582660457867267760774926056, 371957447883460094753165283327508136961232], [350638375217868355605228501202308591976614, 180387308191204751014067165461477316926662, 319066366849290405041030114738128842965758], [308151428397909399030493231489112785481815, 180405150131754582660457869545722951390679, 276624407170631188039297504953431177025847], [286930435684619213394313066392494491130743, 180405150131754582660457863911886322748759, 297782477661506322749622691453143268054750], [319084268490625027248627873839691763530118, 116706454094209806262182113835957781666264, 255322684219064282786480071312231009994903], [233985582838277005672349498288037389615417, 180413833449373394521101365367402626108759, 201921282485948208670301003580367284666936], [191588083563189483148056218055358757815096, 180405150131754582660457866158933778657976, 297818220767855391925650933585001781207022], [233994266155895833095906953393848521025912, 180405150131754582660457869545722991312638, 223133549093183152980989030661699881588694], [361633492528980194387065110289889238357409, 170072010379365345400281269629148313310679, 212800401117955230546372755685061391809489], [297818288654351019409299099658132608606857, 125284249062426961930290894931768041184, 276624415393458968859031038599990942181126], [308142753303118367937828260549627645489688, 170072002165368453241950292242108207399113, 286966238445783509529331614604209621840120], [308142745071448840635565068280811655038929, 180405150131754582660457869190029296278918, 286957555128164697642887187350666149533361], [297818288645520146285009817569016932314015, 180405150131754582660457869547024398742913, 286957563359845098277436677308149223122047], [297809605336732223033962413719398504932888, 180405150131754582660457869191343197667713, 276633098702246907647038320633816823555320], [308151436611895402345174837965799571679048, 180405150131754582660457869191336970279118, 286966238454636160366669839461442049495080], [308151428389067652547963572865548926098135, 180405150131754582660457869545716763923793, 286957555137017332994816173029833126282167], [297818288645520146259106709530965183691848, 180405150131754598171616821935844939872719, 276624407170631188039297505309112377738166], [308151436620748068719626092545655422461135, 180405150131754582660457869545722991307599, 276624407170631188065149643337410335477167], [308151436620737164338965630862514897481934, 180405150131754582660457869190029296273998, 276633090488249999925793144792932865857966], [308142753303129241296017423339211472376089, 180405150122901947308426701273453127781759, 286966238445794382887623201856962908912121], [308142753303118352452470234313214066230735, 170072002156515786867601219190902160659913, 286966238454636144855459674485355616741247], [297818280431512365231376161799428817476774, 180405150131754582660457869190035523299838, 276633098711088654103715840873395337020806], [308142753294287494813538976947244757215049, 170072002156515802378760171579716435219913, 286966238445783509529331614604209661399081], [308142753303129256833079483053401271862608, 180405150131754582660457869190029335827913, 286966238454625271497270512407134192005246], [308151436611906306699983404555155568767048, 170072002165368437730791339854607874144719, 286957555137017348480174199621934133642286], [308151428389056763678513275802807365854935, 170072002165368453241950291886427006323792, 286966238454636160366669839817129477590967], [265593410522948508508809927929022302833943, 159184199575488695777799716715478125292488, 329345844832812966022682151659516824779190], [308151428397909399030493231489112785481815, 170080693696973268417326490762103292952952, 286966246668622163707305644915730718360440], [308151428397909399030493231489112785481815, 170080693696973268417326490762103292952952, 276624407170631188039297504953431177025847], [297809605327890461014370816316690567034008, 180405150131754582660457869545722951390679, 286966246668622163707305644915730718360440], [350611247030418388559415499217875759317136, 170080685482987265102593788063794109500759, 244426130434577778910203487047785373052385]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 10871635968, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': None, 'aut_solvable': None, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 12, 2, 2], [2, 18, 1, 2], [2, 18, 2, 2], [2, 36, 2, 4], [2, 72, 1, 4], [2, 72, 2, 4], [2, 81, 1, 2], [2, 81, 2, 2], [2, 108, 2, 6], [2, 162, 1, 2], [2, 162, 2, 2], [2, 216, 2, 4], [2, 288, 1, 2], [2, 324, 2, 8], [2, 432, 2, 10], [2, 648, 1, 4], [2, 648, 2, 16], [2, 1296, 2, 14], [2, 1728, 2, 2], [2, 2304, 4, 1], [2, 2592, 1, 6], [2, 2592, 2, 10], [2, 4608, 2, 1], [2, 5184, 2, 2], [2, 10368, 1, 2], [2, 10368, 2, 4], [2, 13824, 4, 2], [2, 20736, 1, 2], [2, 20736, 4, 1], [2, 41472, 2, 1], [3, 512, 2, 1], [3, 65536, 2, 1], [3, 131072, 1, 1], [4, 288, 1, 2], [4, 288, 2, 2], [4, 576, 2, 4], [4, 1152, 1, 2], [4, 1728, 2, 6], [4, 2304, 2, 1], [4, 2304, 4, 1], [4, 2592, 1, 2], [4, 2592, 2, 8], [4, 3456, 2, 8], [4, 4608, 2, 1], [4, 4608, 4, 2], [4, 5184, 2, 18], [4, 6912, 2, 2], [4, 9216, 4, 1], [4, 10368, 1, 4], [4, 10368, 2, 24], [4, 13824, 4, 23], [4, 20736, 1, 2], [4, 20736, 2, 27], [4, 20736, 4, 6], [4, 27648, 4, 8], [4, 41472, 1, 4], [4, 41472, 2, 13], [4, 41472, 4, 32], [4, 55296, 8, 1], [4, 82944, 2, 20], [4, 82944, 4, 29], [4, 82944, 8, 1], [4, 165888, 1, 8], [4, 165888, 2, 10], [4, 165888, 4, 2], [4, 165888, 8, 1], [4, 331776, 2, 6], [4, 331776, 4, 2], [4, 331776, 8, 2], [4, 663552, 2, 2], [4, 663552, 4, 3], [4, 1327104, 4, 1], [6, 512, 2, 1], [6, 1536, 2, 2], [6, 3072, 2, 4], [6, 4608, 2, 6], [6, 9216, 2, 8], [6, 13824, 2, 6], [6, 18432, 2, 10], [6, 27648, 2, 4], [6, 55296, 2, 10], [6, 65536, 2, 1], [6, 73728, 2, 2], [6, 131072, 1, 1], [6, 147456, 4, 2], [6, 221184, 2, 2], [6, 393216, 2, 4], [6, 442368, 4, 2], [6, 589824, 2, 2], [6, 1179648, 1, 2], [6, 2359296, 4, 1], [6, 4718592, 2, 1], [8, 2304, 2, 1], [8, 2304, 4, 1], [8, 13824, 4, 3], [8, 20736, 2, 1], [8, 20736, 4, 4], [8, 41472, 4, 4], [8, 41472, 8, 1], [8, 82944, 4, 6], [8, 331776, 2, 2], [8, 331776, 4, 5], [8, 663552, 2, 2], [8, 663552, 4, 9], [8, 663552, 8, 1], [8, 1327104, 2, 4], [8, 1327104, 4, 5], [8, 1327104, 8, 1], [8, 2654208, 8, 2], [8, 5308416, 4, 1], [8, 10616832, 4, 1], [12, 73728, 2, 6], [12, 147456, 2, 8], [12, 147456, 4, 6], [12, 221184, 2, 6], [12, 294912, 2, 2], [12, 442368, 2, 8], [12, 442368, 4, 22], [12, 589824, 4, 1], [12, 884736, 2, 2], [12, 884736, 4, 8], [12, 1769472, 4, 1], [12, 2359296, 4, 1], [12, 2359296, 8, 1], [12, 4718592, 2, 1], [12, 4718592, 4, 2], [12, 7077888, 8, 1], [16, 10616832, 4, 1], [16, 10616832, 8, 1], [24, 589824, 4, 3], [24, 1769472, 4, 3]], 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 12, 4], [2, 18, 6], [2, 36, 8], [2, 72, 12], [2, 81, 6], [2, 108, 12], [2, 162, 6], [2, 216, 8], [2, 288, 2], [2, 324, 16], [2, 432, 20], [2, 648, 36], [2, 1296, 28], [2, 1728, 4], [2, 2304, 4], [2, 2592, 26], [2, 4608, 2], [2, 5184, 4], [2, 10368, 10], [2, 13824, 8], [2, 20736, 6], [2, 41472, 2], [3, 512, 2], [3, 65536, 2], [3, 131072, 1], [4, 288, 6], [4, 576, 8], [4, 1152, 2], [4, 1728, 12], [4, 2304, 6], [4, 2592, 18], [4, 3456, 16], [4, 4608, 10], [4, 5184, 36], [4, 6912, 4], [4, 9216, 4], [4, 10368, 52], [4, 13824, 92], [4, 20736, 80], [4, 27648, 32], [4, 41472, 158], [4, 55296, 8], [4, 82944, 164], [4, 165888, 44], [4, 331776, 36], [4, 663552, 16], [4, 1327104, 4], [6, 512, 2], [6, 1536, 4], [6, 3072, 8], [6, 4608, 12], [6, 9216, 16], [6, 13824, 12], [6, 18432, 20], [6, 27648, 8], [6, 55296, 20], [6, 65536, 2], [6, 73728, 4], [6, 131072, 1], [6, 147456, 8], [6, 221184, 4], [6, 393216, 8], [6, 442368, 8], [6, 589824, 4], [6, 1179648, 2], [6, 2359296, 4], [6, 4718592, 2], [8, 2304, 6], [8, 13824, 12], [8, 20736, 18], [8, 41472, 24], [8, 82944, 24], [8, 331776, 24], [8, 663552, 48], [8, 1327104, 36], [8, 2654208, 16], [8, 5308416, 4], [8, 10616832, 4], [12, 73728, 12], [12, 147456, 40], [12, 221184, 12], [12, 294912, 4], [12, 442368, 104], [12, 589824, 4], [12, 884736, 36], [12, 1769472, 4], [12, 2359296, 12], [12, 4718592, 10], [12, 7077888, 8], [16, 10616832, 12], [24, 589824, 12], [24, 1769472, 12]], 'center_label': '2.1', 'center_order': None, 'central_product': False, 'central_quotient': '339738624.gt', 'commutator_count': 1, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 27, 'conjugacy_classes_known': False, 'counter': 64, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 12, 1, 4], [2, 18, 1, 6], [2, 36, 1, 8], [2, 72, 1, 12], [2, 81, 1, 6], [2, 108, 1, 12], [2, 162, 1, 6], [2, 216, 1, 8], [2, 288, 1, 2], [2, 324, 1, 16], [2, 432, 1, 20], [2, 648, 1, 36], [2, 1296, 1, 28], [2, 1728, 1, 4], [2, 2304, 1, 4], [2, 2592, 1, 26], [2, 4608, 1, 2], [2, 5184, 1, 4], [2, 10368, 1, 10], [2, 13824, 1, 8], [2, 20736, 1, 6], [2, 41472, 1, 2], [3, 512, 1, 2], [3, 65536, 1, 2], [3, 131072, 1, 1], [4, 288, 1, 6], [4, 576, 1, 8], [4, 1152, 1, 2], [4, 1728, 1, 12], [4, 2304, 1, 6], [4, 2592, 1, 18], [4, 3456, 1, 16], [4, 4608, 1, 10], [4, 5184, 1, 36], [4, 6912, 1, 4], [4, 9216, 2, 2], [4, 10368, 1, 52], [4, 13824, 1, 92], [4, 20736, 1, 80], [4, 27648, 1, 32], [4, 41472, 1, 154], [4, 41472, 2, 2], [4, 55296, 2, 4], [4, 82944, 1, 152], [4, 82944, 2, 6], [4, 165888, 1, 36], [4, 165888, 2, 4], [4, 331776, 1, 16], [4, 331776, 2, 10], [4, 663552, 1, 12], [4, 663552, 2, 2], [4, 1327104, 2, 2], [6, 512, 1, 2], [6, 1536, 1, 4], [6, 3072, 1, 8], [6, 4608, 1, 12], [6, 9216, 1, 16], [6, 13824, 1, 12], [6, 18432, 1, 20], [6, 27648, 1, 8], [6, 55296, 1, 20], [6, 65536, 1, 2], [6, 73728, 1, 4], [6, 131072, 1, 1], [6, 147456, 1, 8], [6, 221184, 1, 4], [6, 393216, 1, 8], [6, 442368, 1, 8], [6, 589824, 1, 4], [6, 1179648, 1, 2], [6, 2359296, 1, 4], [6, 4718592, 1, 2], [8, 2304, 1, 6], [8, 13824, 1, 12], [8, 20736, 1, 18], [8, 41472, 1, 12], [8, 41472, 2, 6], [8, 82944, 1, 24], [8, 331776, 1, 24], [8, 663552, 1, 36], [8, 663552, 2, 6], [8, 1327104, 1, 24], [8, 1327104, 2, 6], [8, 2654208, 2, 8], [8, 5308416, 2, 2], [8, 10616832, 2, 2], [12, 73728, 1, 12], [12, 147456, 1, 40], [12, 221184, 1, 12], [12, 294912, 1, 4], [12, 442368, 1, 104], [12, 589824, 1, 4], [12, 884736, 1, 36], [12, 1769472, 1, 4], [12, 2359296, 1, 4], [12, 2359296, 2, 4], [12, 4718592, 1, 10], [12, 7077888, 2, 4], [16, 10616832, 2, 6], [24, 589824, 1, 12], [24, 1769472, 1, 12]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 48, 'exponents_of_order': [23, 4], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[18, 1, 8], [36, 1, 22], [72, 0, 4], [72, 1, 40], [81, 0, 8], [108, 1, 32], [144, 1, 30], [162, 0, 4], [162, 1, 26], [216, 1, 56], [288, 1, 22], [324, 0, 16], [324, 1, 68], [432, 1, 60], [648, 0, 20], [648, 1, 84], [864, 1, 20], [1296, 0, 16], [1296, 1, 54], [2592, 1, 20]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '339738624.gt', 'hash': 998912746418625114, 'hyperelementary': 1, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': None, 'inner_gens': None, 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': None, 'inner_split': None, 'inner_tex': 'C_2^{16}.C_3^4.D_4:D_4', 'inner_used': None, 'irrC_degree': 18, 'irrQ_degree': 18, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 16], [2, 12], [4, 4], [8, 16], [12, 32], [16, 20], [18, 48], [24, 24], [32, 4], [36, 100], [48, 36], [72, 128], [81, 48], [96, 16], [108, 96], [144, 100], [162, 84], [216, 136], [288, 44], [324, 176], [432, 124], [648, 208], [864, 40], [1296, 140], [2592, 40]], 'label': '679477248.cl', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C2^9.(A4^2wrC2.C2^2.D4)', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 7, 0, 0, 0, 11, 0, 0, 15, 0, 11, 0, 7, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 629, 'number_characteristic_subgroups': 22, 'number_conjugacy_classes': 1692, 'number_divisions': 1616, 'number_normal_subgroups': 64, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 679477248, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 614911], [3, 263168], [4, 60562944], [6, 34995200], [8, 197296128], [12, 230031360], [16, 127401984], [24, 28311552]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': '32.46', 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 32, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': 'C_2^2\\times D_4', 'pc_rank': None, 'perfect': False, 'permutation_degree': None, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 4], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 8], [2, 12], [4, 6], [8, 16], [12, 32], [16, 12], [18, 48], [24, 24], [32, 8], [36, 84], [48, 36], [72, 128], [81, 24], [96, 16], [108, 96], [144, 96], [162, 84], [216, 136], [288, 48], [324, 166], [432, 124], [648, 184], [864, 40], [1296, 140], [2592, 48]], 'representations': {'PC': {'code': '194747402714543874894787192720686562529519629169636142734808571564188599155524375942590912548920396826771147435902065930006599601293938771516660509341820136026792597513202943434243976595784033567549696609555680525673492943840573923193198751945883056525248842202181413624959355832856235784820994544745051196376650196636116312655193711971422208533643044303908898036844535096532048819081344733943776139768634815488721569096743866951055208724871699771222232126493428279879324744714024593519247144537819286791329873851076746984886345356385402675431288272285830087165189512340846240300473095075757585975346461567091994744564357892459098405037418847760020445169615191146996258293431004852727655113195079166196146749644363118303082077451039355698025086927437492496629262708506779649353021508814303332887227474557838266343661007649970338657597506726388395607331069008162941010352555862234990121902133412413228953389951555545740749220013521403913057311631785335526750709967339324845764437314145157242782740030585677274198113216797219590757350249732263649075208293433527531774010422422426844687702668716796204031691878137141702744198972837290102400852698224304682458338018579519196165906432450541411096358273064233019058874607474382648981166630668844633240057472130131487437046806219432698542290172093762498829761676238281748896870665763391831882431785552891760503075333672265965037032148630223852370006961787420738833798185145340314571915415529974022122624351850365258421821936368332283358178722022967015369302295034171508334762327446179392099497206661023984115999251791175795998330950540952652564952712548168580422513509867499107094066759804569949844908476577610249620631204952074647943022506193958614433884848971597827459234834945420294493430052805668450506005802172073797424867894133338950796164154320204663063198476959963199222523792306276233526031440961220486569015142391649972056780868747086250150757206532868604888798819008087220215642403403948564850091518093061914097490008162657205264287906776932255469027433164272318871789449952937968893955853465965221708271525998808995493679254743207503130879416484131007951210038849738732686189114248971644665174469911527452151641766003951732036859186954420964856906447585871118977442095410829528833557316988769055057729844655993390119958367676143498933482623865472684554373784571623415808', 'gens': [1, 3, 4, 6, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], 'pres': [27, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 54, 3722036428, 49224139670, 274509191, 12014218136, 70097205603, 25555268046, 11988615873, 300, 85848476404, 658351831, 16328892118, 3913913632, 53144850389, 43090965824, 23744559083, 6700535870, 1346307269, 464, 67153329942, 31706633985, 23662313196, 15970456239, 4472871846, 546, 37842121735, 11776043554, 30354034237, 18139901272, 1908047347, 1077963748, 11335728392, 56823291107, 3111589790, 18506654585, 1576033964, 688811831, 920090024, 1069354259, 710, 30068858889, 81164782116, 9786709503, 4894754490, 10154121237, 4263984, 2538177291, 554799978, 1429021450, 839621413, 46468629568, 14746021579, 3431961046, 2611756369, 2729625004, 1174099411, 80069050, 225676, 874, 194824756235, 971937830, 421023809, 3776896604, 11983407095, 285814802, 2798077133, 90921080, 544444643, 14353238028, 74014207527, 41432938626, 16687607133, 7234539744, 915768975, 442317036, 162894036, 389220618, 44481, 3262476, 6850074, 1038, 148189789453, 105841064488, 11828726851, 30822228958, 2740760185, 214679956, 182565103, 276868570, 21092629, 18266755, 1758010, 3493601294, 121864538921, 60932269508, 30461935775, 15228868442, 4353967229, 3807217256, 1088491973, 362655860, 181284332, 38841679887, 56866572330, 28442244165, 18572447328, 7106082171, 296273607, 148043634, 53299814416, 33226988011, 64626157222, 32315458129, 17247486940, 4934397031, 2469578074, 1233599425, 718752922, 359574892, 135508059665, 74183879852, 34179485831, 18558567170, 10469676509, 3848420312, 3458854403, 1309943222, 435913073, 218271608, 24039791, 9903050, 227789, 93680, 74208265362, 147170753325, 5031569736, 36792688419, 122332158, 1551755385, 851005620, 5060520, 9862227, 3989430, 1970289, 122862666259, 149228282926, 1466864713, 37307070820, 83980927, 606061594, 790819381, 1399969, 13122316, 3557863, 1830970, 334143460244, 104806965359, 29823565034, 26210559413, 12408618224, 5725811099, 3041837246, 1548842357, 515423648, 258079385, 490178, 11226917, 27560, 133049, 54741671445, 128384061744, 51222036171, 12699530022, 13800121761, 6404294316, 1484990679, 1645338630, 947076213, 473602404, 174183663, 85734120, 1547121, 2202924, 264473268502, 81333631921, 30815868172, 26388843655, 11045563186, 553713565, 459963760, 230116162, 29957332, 12139627, 4046782, 2496793, 166246152215, 127922167346, 67347189581, 53314464488, 9029895683, 7384431902, 6461133017, 1546506644, 515922287, 326230682, 154863221, 23106704, 2395355, 3180758, 119621318424, 63407836851, 85570603278, 36822664905, 8415867732, 13805218959, 237945786, 313336590, 156814242, 31152894, 729321, 4333848, 89475, 376289971225, 40278311476, 15087990607, 6918159562, 19926264517, 7621327744, 4967085427, 2365686862, 788575093, 469800430, 59490583, 43139626, 12990157, 4532488, 150686749466, 103744841525, 67436162576, 53248761179, 6676211294, 1890696653, 6752856950, 834526610, 646088156, 323037665, 116996048, 58288247, 19499642, 9715031]}, 'Perm': {'d': 36, 'gens': [308151428397909399030493231489112785481815, 180405150131754582660457869545722951390679, 276624407170631188039297504953431177025847]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 4], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 64, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2^9.(A_4^2\\wr C_2.C_2^2.D_4)', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 5, 'aut_exponent': 48, 'aut_gen_orders': [8, 24, 24], 'aut_gens': [[20829344644064, 5693540049228, 3929601745418], [5786821997154, 18133000742868, 13828073823500], [9616479707389, 18213948370791, 1488736971945], [5606321846396, 18213908459016, 1395331654198]], 'aut_group': '2654208.a', 'aut_hash': 3325821346044436304, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 2654208, 'aut_permdeg': 1440, 'aut_perms': [3340901392829907928829961741984985745392126142138746791326412494426555615192642323733460533245963529215289405391420211064213028532224308672108679792255879277881484555756022834127255593751842756126906416834074565089786135630888702289744707279207870745057348869088976854811342542522186546073038457353177599454173614111304285306954811717861130280397673377736929167292257671851759932658781581035745137786304234167924092732499513242609973286820158206804899073814555361326786902192349720301969337502327087970949202620249779082141685152138492162674362112351775021724101455093060290765410491404430524873474989071273536355165394641494939196511009545342194373819268922552354767075133704483351911641159147902994626191132035448681233599616181337058208596033124615257454419837808043914330683407266063815554754722062395100962708277569972149816567055825801883300051909136061258251620622124546365616385924802591239285112312828491281749623701826325174469332105968617452742230479600034561031852194432495295023373901215627357528196145602006807569787747744467181073805337869092560707246387795146683216119873413549371399096630138827600235269397192249490104892091579829919221262950655001337542605335079847294206121363930043128302481570142635362965386536849537587503437425860404194242166056263941826290449528432582840426427577848865152340423527803554243337931227789721040686660534891848061318843961016287468839014444066056784185744709990125895828049390561861408977581123395199558245102457448955261994729779115462866198857512350682757035051442467263959402762297455817880648337790881141479829033937430423193905480544219249932122837183751511953177134321221352915030740250074696004047148337669174131552402762260355925273824802836272906652687884651779283700376554081602738793867866462427863400230728837846890912133240465157992015442040499926864389010765515608626948276237168691180351441645382489889503965449400223949526658475114633369812678725160636996496487663491842573939120995468299028421129871356138276829087236523590613111253717533031917192122550008762449475575714922761527741689618930723580065528813015664500351652374386740061035159803233878810024283040710161983696601219776831681964916269404133793357216581438614438636803587483853400616488559686548823307839303819039519211735546647832118687242375609987773648841195456090244834837817645335246288320502377321704937653739776152664616225447454089834777355143348000727362975284903919961273694322439755296441569757917603021579634127907545780842510379684458413193187133155697045974085360796074408935737294095283082428221075501341837418456410969457180389203591153401827945428141425986537750326484620434916455132092653161374302075719597767131959275574571908382191794657725229395890131140067811650544529215729223179658816962889305567537525301761312029319436326096966617067030444194331924336948501679980145743066095341054509503151627584320294369890446469622579604329834109408611803862726502441340729249258201230087981892850671137007709367782871156013143660378170552931504633045622717909662701883957300622402890373178550957792714133497323155486150347291041824697879264372639995648146881139375842874492796606631628052589121007431494379541928035409196698847492492836018764314714037923236504334698978184414831611120751525967346729638918459801124092171192308365080670179531330219663579943589275569044048424163002601243405773018047955561820130432372552368108888930683520667197083217499249993758563451768102646840686344516872176410566365631610286973045180005452818899957010743769236986539286460139218554110328366420593168914485829405397258725708736522071422225737987962890612444520600714715293176389144123075696330563427076104107849930486851711224581526046486220764973883817887516620625967117786854045043162939972938507053529775479110786947650458715071947499606993727963015120274912719181931106808741917403643808855320242041414019696978325230150373729051480581548384594353780295092361837926042462918587768850266611, 4323804914823172884375992946353655824790711155943266676435038985073238242132020685832436210807801365265110846888133194330758116682194281128813452165485617540219775700730874811242855085756706639955843483215732726837791838727816451360194357296202392236152054578294201304275399148531558949891401217049075279178403488343432721481260522839780439479868428453895919513205424811721404392498839884291004686889120653214104460025285478415675254041480933923744694514061589473608654186202374161119608975141444647445062434669040948173695495841561792181655233986883512205426813778740248224154706999902837635569911324512742367661682008726119344144243870275943246493088928217892847984519788020139435569965208844302483946532318675952515734550777154314179867558976092987758707154143615033007106008752966462004024760310775375684345984199898033317650901963910698427119499213331236983554218276537126546018117020709976004688701436787609050340638080690336135233666665710855953284894791295052694451486244121593736465363588029557257080489620598017377800281014124421378013112742342602623371654465181182172656714995901712980595413530134605922901562206179935189033324549809691063772017821008377509298456601765687335268516265101959427110114923939810225293446368876756520032023846630278571454034626677627627152264763911289120180725165660820904393730449978628860034000966762625144407420783812444506706781923871370601845949622732880345810833234953756046020908440533283319123723942562991036935205297102805806328643865910285927721326316608974757714595985937794264562828532222426902163175703595670660535365258428287740111632109563956233985635735198872179957389816015964188738100065568688440777135198100904308740951092681766083459193092884730634016321370672760469525853426656193282744408235276354489979036028564415456373741556706107146841492553814275520336093638691333500342869271717977832735531913687233453460286958540786311018831142243060585060550679176164637097521347245903786209053688650413018339339674167893255394034228914073577688235359010174698928319574415523758492645293481668253246520343997167865479502585176068196203758625639847812556328802466019237853984520528984312616949109375901309198535515442762651507513226412317954890113602248330838595720338825830527227727984075590299418414432490983952419060308562743957536054483418036245855892539180903462363218517040470360235757577979607348306637408410558205347270544575413271427392231750246141042903787274622568220396371745203564094988285801002809734981942996193873827918184451048572380094102475188985301106807417472477383328611072455587906498504903782451448927473318774291912389597914846172477914185096610646260334644035084424648987095337741744373941704951234780699108480371671050874751102878256106360610602744636328376803597390286883972004897319824168552667922433464784460607760406642605313759081241264161660732089621873739499595374766395037218120575515357301150126302376451346300553479740493990286443178748490661822734063659115694979427732542925155997981266143368921073478892268603906072403527124220528946299073654314575195423771771341143936476371277749928152021547354539381997357904414099821961849054051363207916893614795744780480988523424199315291318834328501242448080709550334496516920832793888129160753590565065953052631005796299072885682314271178689271155654123206097725985774061674649558920172213665264956597590378235831011441872492704777787842072089713850527387079073575255427340720283279497309300222173900989505893253739009196341965671990579646683279765284591332907641134934589008961482453623925452042024115912789188064902148928849388873419939586140895192151597135355877840989980572508954799394947528701511433778342829497056522150356622317715272192421731865149974363609498806583122445000224939749534937564803644730990643022858816596896912203514132714578233190410374973589118705449725931542637793944136877910373444193265707265491557640168298620517442563410548744734809888103920213405395687140048204, 95847594050216358951507906752127415167003680931179449791394944079000863085909678950206884110143183952457733560233424512821892154070387208621431065786986451840253327427649589001816423491963382714708521441714571051848684144757034760076337065282761062677190824079882597243421487560305520327263355232093992084748247121305017126494667822475814112588353590488963864544574997157689298111139709364540450422373194782866167469269417550586168707731023384476834805915080131398258803772855942924048867079890682684166258392894091430246845156092661274351173553805664407878836284158285800416288661069036489878059905953838021152596985640515855582322188578411647293651781568289802308464917608446030752881564827358445925958608613453435946119216786832228783285183876959393881830506646956158976351042207595312420513323536339223906295461055686179276806884720679797983561889057382550616814203519361391688715801108009689143210185218096010609507735145525443096550640347326882128359276372138823975822770406560170196230000083166839811664296439793228007851765436546741593273524148174031594275637811997132735688327984609767541695935506981136443948561892772521107214170435035814488926975637210866958634669927219390549665697404973038977938901903808537749129376583263236620323130856674646154266960302829291295577695883586057131954815588138380293526036982432548105113104652855316766307535124065569532828436708876298028035405301131606511622595706764095820594073235328616909176101494313701258688727806465005878293261760774243707358676902754251622498382730945960920565222981688970493739063865374037405038387574701858562594414333796605929691620043184560769584704893936829028859370542138898125278837270816978530152745558240978037732650398095379494879448442154721297316109966412320601737076990364607733021352300265606432233276368664854431508803666924361177448444906854577680665129546064743590392789963687809127733517868857833176597056877488015482911925293308217215657286552599469299214404887378922156172662179685164196712899275357873036730616930554816155252386384145350877199981903452344048081742422267304235608507784829983812617226560689812914937977590419772079200467672292747992594175730427278413537983219040844895208824410427000780329677299054184781280989711386104375133721404893906602533166270488366334061684163233821656046896735716137824495030263014326321467453522210603494160155765731431013917328636387667216683936174088514297786534983867373972015143997548984502339721331768484768705475596208201830212235126708733412909259471684696288049633400982598081411328680424958624112692638046954405848541110736598787889890307372974975731819547277821258699739762971950905273902801004481017753300121982973068941916022925048079383586636869370404942520473470299504602596138786676497417427496920036436213073283675087558636124845932360155271714064226148012010607325931504400839160410580745269902933870847970885231130729357405047617089290261355628266987134444645048249231232138459049028854451753985033624346303480923621549485768118780657642244110227586600577709123785290632906834596099784003119351118402334059926295904014879380025880451351936012170906560498664884481199586021304329419650694545654071798967584333718692601386950122788437128241922881163201864158472928969849188021088078947554576957661128892665778652109117255689019844352202370293100259961174137430664577012197696648569756696444899237267108396457885645152702312627252529003780797852244669877854758504879047226250396351742925445622892722794186011347375746341660342072535572720156117096595482372185749262856702918611143838917988453128908435246906625352432584975726704420120147167861962971758879893976646481330076057646627739183466205402720338501718683054829319816605839447565732452108867759839766813786656093142506341626212579982642309353275441196826512795030529097703112684560778078199040369429524371830248886395997634934431124981400623998876160400708272555084283924883020428990913822311941242262035078356014229], 'aut_phi_ratio': 6.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 12, 1, 1], [2, 18, 1, 1], [2, 36, 1, 1], [2, 72, 1, 1], [2, 81, 1, 1], [2, 108, 1, 1], [2, 144, 1, 1], [2, 432, 1, 1], [2, 576, 1, 2], [2, 576, 2, 1], [2, 648, 1, 1], [2, 864, 1, 1], [2, 1296, 1, 2], [2, 1728, 1, 1], [3, 32, 1, 1], [3, 128, 1, 1], [3, 256, 1, 1], [3, 2048, 1, 1], [3, 4096, 1, 1], [4, 72, 1, 1], [4, 144, 1, 2], [4, 288, 1, 2], [4, 432, 1, 1], [4, 576, 1, 1], [4, 648, 1, 1], [4, 864, 1, 4], [4, 1296, 1, 3], [4, 1728, 1, 4], [4, 2592, 1, 3], [4, 3456, 1, 1], [4, 3456, 2, 1], [4, 5184, 1, 6], [4, 5184, 2, 1], [4, 10368, 1, 2], [4, 10368, 2, 1], [4, 20736, 1, 1], [4, 20736, 2, 1], [6, 96, 1, 1], [6, 192, 1, 1], [6, 288, 1, 1], [6, 576, 1, 1], [6, 768, 1, 1], [6, 864, 1, 1], [6, 1152, 1, 2], [6, 1536, 1, 1], [6, 2304, 1, 2], [6, 3456, 1, 1], [6, 4608, 1, 3], [6, 6144, 1, 1], [6, 6912, 1, 1], [6, 9216, 1, 2], [6, 9216, 2, 1], [6, 13824, 1, 1], [6, 36864, 1, 2], [6, 36864, 2, 1], [8, 288, 1, 1], [8, 1728, 1, 1], [8, 2592, 1, 1], [8, 10368, 1, 2], [8, 10368, 2, 1], [8, 20736, 1, 1], [8, 20736, 2, 2], [8, 41472, 2, 1], [8, 82944, 2, 1], [12, 1152, 1, 1], [12, 2304, 1, 4], [12, 3456, 1, 1], [12, 4608, 1, 4], [12, 6912, 1, 4], [12, 9216, 1, 2], [12, 13824, 1, 4], [12, 18432, 1, 2], [12, 27648, 1, 1], [12, 27648, 2, 1], [12, 36864, 1, 1], [16, 82944, 2, 1], [24, 4608, 1, 1], [24, 13824, 1, 1], [24, 18432, 1, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^8.S_3\\wr D_4', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 48, 'autcentquo_group': '2654208.a', 'autcentquo_hash': 3325821346044436304, 'autcentquo_nilpotent': False, 'autcentquo_order': 2654208, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_2^8.S_3\\wr D_4', 'cc_stats': [[1, 1, 1], [2, 12, 1], [2, 18, 1], [2, 36, 1], [2, 72, 1], [2, 81, 1], [2, 108, 1], [2, 144, 1], [2, 432, 1], [2, 576, 4], [2, 648, 1], [2, 864, 1], [2, 1296, 2], [2, 1728, 1], [3, 32, 1], [3, 128, 1], [3, 256, 1], [3, 2048, 1], [3, 4096, 1], [4, 72, 1], [4, 144, 2], [4, 288, 2], [4, 432, 1], [4, 576, 1], [4, 648, 1], [4, 864, 4], [4, 1296, 3], [4, 1728, 4], [4, 2592, 3], [4, 3456, 3], [4, 5184, 8], [4, 10368, 4], [4, 20736, 3], [6, 96, 1], [6, 192, 1], [6, 288, 1], [6, 576, 1], [6, 768, 1], [6, 864, 1], [6, 1152, 2], [6, 1536, 1], [6, 2304, 2], [6, 3456, 1], [6, 4608, 3], [6, 6144, 1], [6, 6912, 1], [6, 9216, 4], [6, 13824, 1], [6, 36864, 4], [8, 288, 1], [8, 1728, 1], [8, 2592, 1], [8, 10368, 4], [8, 20736, 5], [8, 41472, 2], [8, 82944, 2], [12, 1152, 1], [12, 2304, 4], [12, 3456, 1], [12, 4608, 4], [12, 6912, 4], [12, 9216, 2], [12, 13824, 4], [12, 18432, 2], [12, 27648, 3], [12, 36864, 1], [16, 82944, 2], [24, 4608, 1], [24, 13824, 1], [24, 18432, 1]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '1327104.d', 'commutator_count': 1, 'commutator_label': '165888.bl', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 18, 'conjugacy_classes_known': True, 'counter': 4, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 12, 1, 1], [2, 18, 1, 1], [2, 36, 1, 1], [2, 72, 1, 1], [2, 81, 1, 1], [2, 108, 1, 1], [2, 144, 1, 1], [2, 432, 1, 1], [2, 576, 1, 4], [2, 648, 1, 1], [2, 864, 1, 1], [2, 1296, 1, 2], [2, 1728, 1, 1], [3, 32, 1, 1], [3, 128, 1, 1], [3, 256, 1, 1], [3, 2048, 1, 1], [3, 4096, 1, 1], [4, 72, 1, 1], [4, 144, 1, 2], [4, 288, 1, 2], [4, 432, 1, 1], [4, 576, 1, 1], [4, 648, 1, 1], [4, 864, 1, 4], [4, 1296, 1, 3], [4, 1728, 1, 4], [4, 2592, 1, 3], [4, 3456, 1, 3], [4, 5184, 1, 8], [4, 10368, 1, 4], [4, 20736, 1, 3], [6, 96, 1, 1], [6, 192, 1, 1], [6, 288, 1, 1], [6, 576, 1, 1], [6, 768, 1, 1], [6, 864, 1, 1], [6, 1152, 1, 2], [6, 1536, 1, 1], [6, 2304, 1, 2], [6, 3456, 1, 1], [6, 4608, 1, 3], [6, 6144, 1, 1], [6, 6912, 1, 1], [6, 9216, 1, 4], [6, 13824, 1, 1], [6, 36864, 1, 4], [8, 288, 1, 1], [8, 1728, 1, 1], [8, 2592, 1, 1], [8, 10368, 1, 4], [8, 20736, 1, 5], [8, 41472, 1, 2], [8, 82944, 1, 2], [12, 1152, 1, 1], [12, 2304, 1, 4], [12, 3456, 1, 1], [12, 4608, 1, 4], [12, 6912, 1, 4], [12, 9216, 1, 2], [12, 13824, 1, 4], [12, 18432, 1, 2], [12, 27648, 1, 3], [12, 36864, 1, 1], [16, 82944, 1, 2], [24, 4608, 1, 1], [24, 13824, 1, 1], [24, 18432, 1, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 48, 'exponents_of_order': [14, 4], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 8], [18, 1, 8], [24, 1, 6], [36, 1, 14], [48, 1, 9], [72, 1, 10], [81, 1, 8], [96, 1, 4], [108, 1, 8], [144, 1, 10], [162, 1, 6], [216, 1, 6], [324, 1, 2], [432, 1, 1]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '1327104.d', 'hash': 4116506670747618155, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 48, 'inner_gen_orders': [12, 6, 12], 'inner_gens': [[20829344644064, 9703661617436, 15316372083604], [18133084195076, 5693540049228, 12694799578451], [8308769402749, 19615075601625, 3929601745418]], 'inner_hash': 4116506670747618155, 'inner_nilpotent': False, 'inner_order': 1327104, 'inner_split': True, 'inner_tex': 'A_4^2\\wr C_2.C_2^2.D_4', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 8], [2, 6], [4, 2], [8, 8], [12, 8], [16, 10], [18, 8], [24, 6], [32, 2], [36, 14], [48, 9], [72, 10], [81, 8], [96, 4], [108, 8], [144, 10], [162, 6], [216, 6], [324, 2], [432, 1]], 'label': '1327104.d', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'A4^2wrC2.C2^2.D4', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 122, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 136, 'number_divisions': 136, 'number_normal_subgroups': 29, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 1327104, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 9039], [3, 6560], [4, 180144], [6, 239712], [8, 398592], [12, 290304], [16, 165888], [24, 36864]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': True, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[20829384560744, 5693540049354, 3929601744578]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': None, 'perfect': False, 'permutation_degree': 16, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': False, 'ratrep_stats': [[1, 8], [2, 6], [4, 2], [8, 8], [12, 8], [16, 10], [18, 8], [24, 6], [32, 2], [36, 14], [48, 9], [72, 10], [81, 8], [96, 4], [108, 8], [144, 10], [162, 6], [216, 6], [324, 2], [432, 1]], 'representations': {'PC': {'code': '4327903453365276281223549395627500844469822304182829179758841984496775694886808247845708693714905302219697147108103863012913241888434290395518908194594278863506752073343071729433614507355202182181134788393972616600453961070675129090302665778244232495547846422577854572916450174963625159779489592220902015302607919508380935498695311064167585977638249840198000273178113861820918531230160906587096445216956483468313760219413207151492843478620600873317562826052737145501407052471652071716105463457429167647602088275832197283848839202596662590355928298162076328470614797964141193500702161782413808417420155115960122388412170525462882121741849391151210474021972839307300562581176718283117188979131717296031068656674095885127681228699091087623712753552548325225617051006889700889920', 'gens': [1, 2, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17, 18], 'pres': [18, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 8572032, 8119801, 91, 51028490, 8716610, 48377091, 46583445, 20498295, 29636644, 28271182, 27876820, 14522638, 256, 86410373, 22871831, 18890537, 15350747, 131799030, 54057552, 25811898, 7620, 3578226, 4198542, 366, 8128519, 5557273, 40623019, 6973, 19087, 47617, 6505928, 77563034, 12923756, 8654750, 2181248, 2364974, 1947032, 360746, 476, 223061769, 65044827, 1658925, 414801, 4088979, 82197, 136863946, 123190876, 3392974, 2951056, 1090666, 5100184, 573922, 369010, 586, 280696331, 41501, 68802095, 8491475, 3965861, 1617527, 24261132, 41243934, 40030896, 10614324, 4700694, 1516440, 43716, 21270, 107122189, 53561119, 40497457, 326677, 5715463, 1905241, 299533, 158935, 53113, 25159, 145566734, 53187872, 74882930, 14696708, 19420646, 2449544, 583322, 466700, 42314, 22082, 8957967, 150792225, 14307891, 18662469, 8802519, 7278441, 3172731, 777741, 445983, 212721, 93507, 36501, 171320848, 152285218, 52480276, 13913296, 2181274, 1784716, 694150, 25900, 13984, 118133009, 57386915, 25614233, 6088715, 4409117, 396737, 17675, 56573, 59507]}, 'Perm': {'d': 16, 'gens': [20829344644064, 3929601745418, 5693540049228]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': None, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 256, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'A_4^2\\wr C_2.C_2^2.D_4', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}