Properties

Label 6750.c.1.a1
Order $ 2 \cdot 3^{3} \cdot 5^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times C_{15}^2).C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Index: $1$
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $a^{3}d^{5}, c^{3}d^{3}, c^{10}, d^{10}, a^{2}, d^{3}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, and metabelian.

Ambient group ($G$) information

Description: $(C_5\times C_{15}^2).C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}^2).C_{12}^2.C_2^2$
$\operatorname{Aut}(H)$ $(C_5\times C_{15}^2).C_{12}^2.C_2^2$
$W$$C_3\times C_5^3:C_6$, of order \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$(C_5\times C_{15}^2).C_6$
Complements:$C_1$
Maximal under-subgroups:$C_{15}^2.C_{15}$$C_3^2\times C_5^2:D_5$$C_5^3:C_{18}$$C_{15}^2.C_6$$C_{45}:C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3\times C_5^3:C_6$