Properties

Label 6750.c.3.b1
Order $ 2 \cdot 3^{2} \cdot 5^{3} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_{18}$
Order: \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \)
Index: \(3\)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $a^{3}d^{5}, d^{3}, d^{10}, b, a^{2}, c^{3}d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_5\times C_{15}^2).C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}^2).C_{12}^2.C_2^2$
$\operatorname{Aut}(H)$ $C_5^3.C_{12}^2.C_2^2$
$W$$C_3\times C_5^3:C_6$, of order \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$(C_5\times C_{15}^2).C_6$
Complements:$C_3$
Minimal over-subgroups:$(C_5\times C_{15}^2).C_6$
Maximal under-subgroups:$C_5^2:C_{45}$$C_5^3:C_6$$C_5^2:C_{18}$$C_9\times D_5$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-1$
Projective image$C_3\times C_5^3:C_6$