Properties

Label 6750.b.50.a1
Order $ 3^{3} \cdot 5 $
Index $ 2 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times \He_3$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{2}, bc^{9}d^{3}, c^{10}, d^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_5\times C_{15}^2):C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_4\times C_3^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$W$$C_3\times C_6$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$D_5\times \He_3$
Normal closure:$C_{15}^2:C_{15}$
Core:$C_3\times C_{15}$
Minimal over-subgroups:$C_{15}^2:C_{15}$$D_5\times \He_3$
Maximal under-subgroups:$C_3\times C_{15}$$C_3\times C_{15}$$\He_3$

Other information

Number of subgroups in this autjugacy class$25$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3\times C_5^3:C_6$