Properties

Label 6750.b.25.a1
Order $ 2 \cdot 3^{3} \cdot 5 $
Index $ 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times \He_3$
Order: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Index: \(25\)\(\medspace = 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{3}, d^{10}, c^{10}, a^{2}, bc^{9}d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_5\times C_{15}^2):C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $F_5\times C_3^2:\GL(2,3)$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
$W$$C_3^2\times D_5$, of order \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$D_5\times \He_3$
Normal closure:$(C_5\times C_{15}^2):C_6$
Core:$C_3\times C_{15}$
Minimal over-subgroups:$(C_5\times C_{15}^2):C_6$
Maximal under-subgroups:$C_5\times \He_3$$C_3^2\times D_5$$C_3^2\times D_5$$C_2\times \He_3$

Other information

Number of subgroups in this autjugacy class$25$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3\times C_5^3:C_6$