-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '6750.b', 'ambient_counter': 2, 'ambient_order': 6750, 'ambient_tex': '(C_5\\times C_{15}^2):C_6', 'central': False, 'central_factor': False, 'centralizer_order': 15, 'characteristic': False, 'core_order': 45, 'counter': 32, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '6750.b.50.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '50.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 50, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '135.3', 'subgroup_hash': 3, 'subgroup_order': 135, 'subgroup_tex': 'C_5\\times \\He_3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '6750.b', 'aut_centralizer_order': None, 'aut_label': '50.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '450.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['2.a1', '25.a1'], 'contains': ['150.a1', '150.d1', '250.a1'], 'core': '150.a1', 'coset_action_label': None, 'count': 25, 'diagramx': [9036, -1, 2223, -1], 'generators': [2, 1626, 300, 4500], 'label': '6750.b.50.a1', 'mobius_quo': None, 'mobius_sub': 1, 'normal_closure': '2.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '25.a1', 'old_label': '50.a1', 'projective_image': '2250.g', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '50.a1', 'subgroup_fusion': None, 'weyl_group': '18.5'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '45.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 5, 'aut_exponent': 24, 'aut_gen_orders': [2, 4, 2, 3, 4, 4, 2, 3, 3], 'aut_gens': [[1, 3, 9], [46, 52, 99], [1, 3, 63], [1, 3, 36], [1, 5, 9], [97, 98, 9], [51, 91, 9], [92, 6, 9], [91, 93, 9], [1, 93, 9]], 'aut_group': '1728.46191', 'aut_hash': 46191, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1728, 'aut_permdeg': 13, 'aut_perms': [284302920, 9, 16, 83841120, 261641520, 51700320, 176158200, 3933792000, 1092687120], 'aut_phi_ratio': 24.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [3, 1, 2, 1], [3, 3, 8, 1], [5, 1, 4, 1], [15, 1, 8, 1], [15, 3, 32, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_4\\times C_3^2:\\GL(2,3)', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '36.8', 'autcent_hash': 8, 'autcent_nilpotent': True, 'autcent_order': 36, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_3\\times C_{12}', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 24, 'autcentquo_group': '48.29', 'autcentquo_hash': 29, 'autcentquo_nilpotent': False, 'autcentquo_order': 48, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\GL(2,3)', 'cc_stats': [[1, 1, 1], [3, 1, 2], [3, 3, 8], [5, 1, 4], [15, 1, 8], [15, 3, 32]], 'center_label': '15.1', 'center_order': 15, 'central_product': True, 'central_quotient': '9.2', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['3.1', '3.1', '3.1', '5.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 3, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['27.3', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [3, 1, 2, 1], [3, 3, 2, 4], [5, 1, 4, 1], [15, 1, 8, 1], [15, 3, 8, 4]], 'element_repr_type': 'PC', 'elementary': 3, 'eulerian_function': 6, 'exponent': 15, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [3, 5], 'faithful_reps': [[3, 0, 8]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '45.2', 'hash': 3, 'hyperelementary': 3, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 3, 'inner_gen_orders': [3, 3, 1], 'inner_gens': [[1, 93, 9], [46, 3, 9], [1, 3, 9]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 9, 'inner_split': True, 'inner_tex': 'C_3^2', 'inner_used': [1, 2], 'irrC_degree': 3, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 6, 'irrep_stats': [[1, 45], [3, 10]], 'label': '135.3', 'linC_count': 8, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 10, 'linQ_degree_count': 1, 'linQ_dim': 10, 'linQ_dim_count': 1, 'linR_count': 4, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C5*He3', 'ngens': 4, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 55, 'number_divisions': 12, 'number_normal_subgroups': 14, 'number_subgroup_autclasses': 10, 'number_subgroup_classes': 22, 'number_subgroups': 38, 'old_label': None, 'order': 135, 'order_factorization_type': 31, 'order_stats': [[1, 1], [3, 26], [5, 4], [15, 104]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 24, 'outer_gen_orders': [2, 12, 4, 4], 'outer_gen_pows': [98, 0, 0, 0], 'outer_gens': [[92, 5, 99], [93, 95, 63], [52, 8, 9], [53, 5, 9]], 'outer_group': '192.951', 'outer_hash': 951, 'outer_nilpotent': False, 'outer_order': 192, 'outer_permdeg': 12, 'outer_perms': [18594007, 14893217, 258750120, 212422440], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_4\\times \\GL(2,3)', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 14, 'pgroup': 0, 'primary_abelian_invariants': [3, 3, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 4], [4, 1], [6, 1], [8, 4], [24, 1]], 'representations': {'PC': {'code': 141691991, 'gens': [1, 2, 3], 'pres': [4, -3, -3, -3, -5, 745, 46]}, 'GLZN': {'d': 2, 'p': 45, 'gens': [1458001, 152806, 91801, 91531]}, 'Perm': {'d': 14, 'gens': [20253915360, 40475635200, 96, 12461309280]}}, 'schur_multiplier': [3, 3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 15], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_5\\times \\He_3', 'transitive_degree': 45, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '18.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 120, 'aut_gen_orders': [24, 24, 24, 12, 8], 'aut_gens': [[1, 6, 30, 450], [5893, 1374, 78, 1164], [2131, 2886, 2826, 3234], [6251, 282, 1422, 4908], [5401, 4050, 144, 1932], [913, 366, 5550, 5322]], 'aut_group': None, 'aut_hash': 1525260094185992089, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1296000, 'aut_permdeg': 575, 'aut_perms': [2522848890045935667026154286440871721925272453901488487589750470324121786363038137469176512162663503999633960228661105533639475375467548369355676845206538404454316612970816418609604725429152200644949526173319817109719772623075781880970415224742102651539362096947737986728563765306724061047303098454612257259270636641678943354126679035449603400363991935083950258437603326270608546203692149966696497792030577173029759407053301035823277647045342807744501094679524903744350722552095746396662965583687012761796374801228979211212324587914444636258473160219316106562610048422610159949251088985003577146602381032782813969914371756489485341498056269097050402194177937038468728004993578190276569062137233369511896928881628346510902874884436786423664426881557898082335403721929728045621124911290344910902100203796300606833424414658057999054840697930119606835723183260119039909966190177240207789970458491613266992039821231801539910756223353996954658049341701570179932166143707964354878118775922177971766384515085390275766903764493181202356295614745875162460843415494634652625792490239480142491465829164536081829243914571395760137509920791459948288499820946126958721595321601056649974611633906850864324703005220992380963064527462131845018310437694397885588834588578742355518714630008587418738617939940872212105285845397796655361907829187801079092732649, 3014789246797470781714397280255156708573552685046327321851968807430986328143614266798343596749638647331908572883626030222830596008576084809351712003236334880783838844330007540886869709860161290585121144760209170895395863908803917907776043786133065621230961841777462964862425939991622781579210304385792123168420552502842400089956675003693979338417642620587505191729238173899230762855734413722908664691147634483256502596372527792032025318198449973541495275393750945087690092262441089062246802281203706188968041498396968291632028582914210734443921083372949414928210340450533969613793022361113069722292729357807483496111461735987221746309425233421982119302785116488858818937233608469346815541456591003065775289720229169226992312660574034921926745307077498269892484432855125042552654781217607398196349879208372307087897867619748673143929212216852381462825299544624512180356766294900195521174375325300936507344052379629061227765334019662083898539192323056109655123214993793563679842953324893344979245053869383239890957463430818606026581551367710026505366159127958018063863683937206495379083412227250944780951495187475040865481132063899142877247081002143622826841303215995139336505012522938277726506831287063855732777050381141730166041384695519859703341183346927234345042867164177561595999131624442382051916134260692202549031890056280198855788359, 2038422817910689095124497254638212012067601833445795009206290752894979119616027782967169609116642486884388283788726135686458486399324498256725158826388344789735155309154818062032323695166717144424305570494531279597111980624764690228609367923891230614310419957033191525652137911176349943392487511514118190647586705472087176705508657772396318345264871755593375725010670550034384480850376463185904653278081767685963535041938179353095795800083512989860898903128986891061408182837754687759710728634650291616088182777174798500028137956571544863207060162801852318738732790094555861782764204889412299619485812496947075671700350484460752652566534875091318404463780604273995645647011324621643694843719203980801791755156268564482556538102609343862134291884748871270363916009486477800545091949329208396644167069986866803807985848863807366921076890127784211138820427066272263003416583317118842707659326818388186600451611185831598629634272999929597574797596920453283984108256383350717845964182998062837194601519284997052126143027114616141580627506817591879545597418926970719600994206664785785650760478438073702214651919571332891332793229183225972181074931002869906077581927433024716048467580707148988730862615935846882774795252627244285785312267408993804667071958053068181476883082905949556382744343918505415374419554705987638165867529131542716953626150, 5672241573134092858691570531426026885868732164206749589864746678720790195797922510623916891230479189240836144795209526925348160578784969404058878343136502585060692325693028526333190903114877414084635572526523760345394321310473235856456839411172504738673192751505712543427879297326100608775711133213812556762320086727716802454914949702819381712383926901916732752024057400570719959435066145855698466076549706720592527784178763475463870792602907068775464795460182056280399403059145646050794413870343768325394182310256830230100160058792839931609175447643518364605882640569935823032532798765592968984720064588478653135939079610071611428705138927501884308325262970215885745423480601350121565881005779243865516109844238487437382515550428876737736665352849867575776267454254840200995430998291834375796308094560979148451061914652012148442916357431186468514671018359227533458387233469571431149959919219842869868847553879227654391335989547680354875705263726616711820006181523392217689724057542040570141756731374980538783600015267992307018781826400337912456706139841197577038388168072040965321952735512654686091260546632225695724655324720247041335098591086835845307646382083724303676317482854479937101279085550067219786493059665132718980269010682237329698226297298852169301541613254087717676340855508197578490484314900116403938091744598150932739363927, 4812082241449899060443486221178837834626618170166915715298936144644880606737510281847014703565869887639165086198247182758132142377451497061882060340342702910087180273054662096761494515938668953992809472567821595413503297146527870189661717853685205713121081287228103410867912505419485098004562575978968848252822223888074310947814668539592451221426477526733128073543203281985780675875117899006496177908510386292929730321865326687618895726254571979249715231212642349435317614104029615223784530716956130550906781166498569190305184380208636892457637134362336200243491338110335103538736019612323401889617812074505351861979486006963486769893068384821757695155485962825269678633442849109946873309720857041506924813672126423726574765401334515372329946841902625282825018891675448437310169411145838356543385913795601319603210507275640190957729704544374808604063458168504245430959079642786355549974628089116465377761855052497182993674100337761054008667476027746633288351160400304085504156673212921849813176430408557559847619296830910961697159492286939151234695414870298456031681003950796970175202629460144823089438160808295569395467791101492725685219807199788238685795898497357349920973441834494820099394720771581981026661010251624123914436182342522789840196076891197392747448446056882812618753323036329207397675432652333419441944498336409694742828507], 'aut_phi_ratio': 720.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 125, 1, 1], [3, 1, 2, 1], [3, 3, 2, 1], [3, 75, 6, 1], [5, 2, 2, 1], [5, 6, 4, 1], [5, 6, 16, 1], [6, 125, 2, 1], [6, 375, 2, 1], [6, 375, 6, 1], [15, 2, 4, 1], [15, 6, 4, 1], [15, 6, 8, 1], [15, 6, 24, 1], [15, 6, 32, 1], [15, 6, 96, 1], [15, 150, 12, 1]], 'aut_supersolvable': False, 'aut_tex': '(C_5\\times C_{15}).C_{15}.C_{12}^2.C_2^3', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 3, 'autcent_group': '9.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 9, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_3^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 120, 'autcentquo_group': None, 'autcentquo_hash': 4315712504607614885, 'autcentquo_nilpotent': False, 'autcentquo_order': 144000, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_5^3.C_6^2.C_2^4.C_2', 'cc_stats': [[1, 1, 1], [2, 125, 1], [3, 1, 2], [3, 3, 2], [3, 75, 6], [5, 2, 2], [5, 6, 20], [6, 125, 2], [6, 375, 8], [15, 2, 4], [15, 6, 164], [15, 150, 12]], 'center_label': '3.1', 'center_order': 3, 'central_product': False, 'central_quotient': '2250.g', 'commutator_count': 1, 'commutator_label': '375.7', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1', '3.1', '5.1', '5.1', '5.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 125, 1, 1], [3, 1, 2, 1], [3, 3, 2, 1], [3, 75, 2, 3], [5, 2, 2, 1], [5, 6, 2, 10], [6, 125, 2, 1], [6, 375, 2, 4], [15, 2, 4, 1], [15, 6, 4, 41], [15, 150, 4, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 12, 'exponent': 30, 'exponents_of_order': [3, 3, 1], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[6, 0, 96]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '2250.g', 'hash': 4747043094101760884, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 30, 'inner_gen_orders': [6, 5, 5, 15], 'inner_gens': [[1, 2706, 216, 3198], [4051, 6, 30, 450], [295, 6, 30, 450], [4483, 6, 30, 450]], 'inner_hash': 3638640786514561450, 'inner_nilpotent': False, 'inner_order': 2250, 'inner_split': False, 'inner_tex': 'C_3\\times C_5^3:C_6', 'inner_used': [1, 2, 4], 'irrC_degree': 6, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 12, 'irrep_stats': [[1, 18], [2, 18], [3, 4], [6, 184]], 'label': '6750.b', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C5*C15^2):C6', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 18, 'number_characteristic_subgroups': 18, 'number_conjugacy_classes': 224, 'number_divisions': 68, 'number_normal_subgroups': 27, 'number_subgroup_autclasses': 88, 'number_subgroup_classes': 328, 'number_subgroups': 9424, 'old_label': None, 'order': 6750, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 125], [3, 458], [5, 124], [6, 3250], [15, 2792]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 24, 'outer_gen_orders': [2, 2, 24, 6], 'outer_gen_pows': [0, 3, 0, 3], 'outer_gens': [[5, 5676, 2736, 1098], [4651, 18, 240, 3600], [151, 1446, 1668, 1992], [2251, 12, 210, 3150]], 'outer_group': '576.6547', 'outer_hash': 6547, 'outer_nilpotent': False, 'outer_order': 576, 'outer_permdeg': 16, 'outer_perms': [1313941668600, 1327353350400, 5493231083814, 5579411004847], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4.D_6^2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 24, 'pgroup': 0, 'primary_abelian_invariants': [2, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 8], [4, 1], [6, 2], [8, 4], [12, 10], [24, 41]], 'representations': {'PC': {'code': '1200683739143646001957950077860879643308354022076777021196151', 'gens': [1, 3, 4, 6], 'pres': [7, 2, 3, 5, 3, 5, 3, 5, 14, 56828, 16326, 6051, 39742, 108, 6934, 30356, 134321, 74982, 166, 137892, 74983]}, 'Perm': {'d': 24, 'gens': [55239425330337030235024, 28260974960271340365240]}}, 'schur_multiplier': [3, 15], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 6], 'solvability_type': 8, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '(C_5\\times C_{15}^2):C_6', 'transitive_degree': 45, 'wreath_data': None, 'wreath_product': False}