Properties

Label 648.277.3.c1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{18}:C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a, d^{6}, d^{8}, c^{3}, c^{2}d^{6}, d^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_3^2\times A_4):S_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9:C_3^2:S_4$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $D_{18}:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{18}:C_6$
Normal closure:$(C_3^2\times A_4):S_3$
Core:$C_{18}:C_6$
Minimal over-subgroups:$(C_3^2\times A_4):S_3$
Maximal under-subgroups:$C_{18}:C_6$$C_{18}:C_6$$C_9:C_{12}$$C_6\wr C_2$$C_9:D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$(C_3^2\times A_4):S_3$