Properties

Label 648.277.6.c1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}:C_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $c^{3}, d^{6}, d^{9}, d^{8}, c^{2}d^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $(C_3^2\times A_4):S_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9:C_3^2:S_4$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$(C_3^2\times A_4):S_3$
Complements:$S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_6^2.C_3^2$$D_{18}:C_6$
Maximal under-subgroups:$C_9:C_6$$C_6^2$$C_2\times C_{18}$

Other information

Möbius function$3$
Projective image$(C_3^2\times A_4):S_3$