Properties

Label 62400.a.4160.a1.a1
Order $ 3 \cdot 5 $
Index $ 2^{6} \cdot 5 \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(4160\)\(\medspace = 2^{6} \cdot 5 \cdot 13 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $\left(\begin{array}{lll}\alpha^{5} & \alpha^{6} & \alpha^{3} \\ \alpha^{3} & \alpha & 1 \\ \alpha^{3} & \alpha^{3} & \alpha^{7} \\ \end{array}\right), \left(\begin{array}{lll}\alpha & \alpha^{4} & \alpha^{3} \\ \alpha & \alpha^{7} & \alpha^{14} \\ \alpha^{3} & \alpha^{2} & \alpha^{14} \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SU(3,4)$
Order: \(62400\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \)
Exponent: \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,4)$, of order \(249600\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \cdot 13 \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_5\times S_3$
Normal closure:$\SU(3,4)$
Core:$C_1$
Minimal over-subgroups:$C_5\times A_4$$C_5\times S_3$
Maximal under-subgroups:$C_5$$C_3$

Other information

Number of subgroups in this conjugacy class$2080$
Möbius function$0$
Projective image$\SU(3,4)$