Properties

Label 62400.a.1040.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{4} \cdot 5 \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times A_4$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(1040\)\(\medspace = 2^{4} \cdot 5 \cdot 13 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{lll}\alpha^{5} & \alpha^{6} & \alpha^{3} \\ \alpha^{3} & \alpha & 1 \\ \alpha^{3} & \alpha^{3} & \alpha^{7} \\ \end{array}\right), \left(\begin{array}{lll}\alpha & \alpha^{4} & \alpha^{3} \\ \alpha & \alpha^{7} & \alpha^{14} \\ \alpha^{3} & \alpha^{2} & \alpha^{14} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{3} & \alpha^{4} & \alpha^{10} \\ \alpha^{5} & \alpha^{5} & \alpha \\ 1 & \alpha^{5} & \alpha^{12} \\ \end{array}\right), \left(\begin{array}{lll}\alpha^{7} & \alpha^{14} & \alpha^{5} \\ 1 & \alpha^{10} & \alpha^{11} \\ \alpha^{10} & 1 & \alpha^{13} \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SU(3,4)$
Order: \(62400\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \)
Exponent: \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,4)$, of order \(249600\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{2} \cdot 13 \)
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times A_4$
Normal closure:$\SU(3,4)$
Core:$C_1$
Minimal over-subgroups:$C_2^2.F_{16}$$C_5\times A_5$
Maximal under-subgroups:$C_2\times C_{10}$$C_{15}$$A_4$

Other information

Number of subgroups in this conjugacy class$1040$
Möbius function$1$
Projective image$\SU(3,4)$