Properties

Label 62208.g.3.A
Order $ 2^{8} \cdot 3^{4} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4.(C_2\times D_4)$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(12,14,15)(13,17,18), (16,19,20), (1,8)(2,7)(3,6)(4,5)(13,17,18), (1,5,8,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $(C_7\times A_4^2):C_6$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
$\card{W}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^4.(C_2\times D_4)$
Normal closure:$C_6^4:(C_2\times S_4)$
Core:$C_6^4.C_2^3$
Minimal over-subgroups:$C_6^4:(C_2\times S_4)$
Maximal under-subgroups:$C_6^4.C_2^3$$C_3^4.C_2^4.C_2^3$$C_6\wr D_4$$C_6\wr D_4$$C_6^4.(C_2\times C_4)$$C_6^4:D_4$$C_6^4:D_4$$C_6^3.(S_3\times D_4)$$C_6^3:(S_3\times D_4)$$(C_3\times D_6^2):D_{12}$$(C_3\times D_6^2):D_{12}$$C_6^3.(S_3\times D_4)$$C_6^3.(S_3\times D_4)$$C_6^3.(S_3\times D_4)$$C_6^3.(S_3\times D_4)$$(S_3\times D_6^2).D_4$$(S_3\times D_6^2).D_4$$D_4^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$