Properties

Label 62208.g.6.S
Order $ 2^{7} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.(S_3\times D_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,3,8,6)(2,5,7,4)(12,14)(13,18), (3,5,6,4)(13,16,18,20,17,19), (10,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^4.C_2^6.C_2^6$
$\card{W}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^4.(C_2\times D_4)$
Normal closure:$C_6^3.(S_3\times S_4)$
Core:$C_6^2.D_6^2$
Minimal over-subgroups:$C_6^3.(S_3\times S_4)$$C_6^4.(C_2\times D_4)$
Maximal under-subgroups:$C_6^2.D_6^2$$D_6:D_6:S_3^2$$D_6:D_6:S_3^2$$C_3^2:C_4^2:S_3^2$$C_3^2:D_{12}:D_{12}$$C_3^4.C_2^3.C_2^3$$C_3\times C_6^3.D_4$$C_3\times C_6^3.D_4$$C_6^3.(C_4\times S_3)$$C_6^3.D_{12}$$C_6^3.D_{12}$$C_6^2.(D_4\times D_6)$$C_6^2.(D_4\times D_6)$$C_{12}^2:C_2^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$