Properties

Label 62208.g.192.A
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:D_6$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(9,11,10)(12,14,15)(13,18,17), (1,8)(2,7)(3,6)(4,5)(13,17,18), (13,18,17), (10,11)(14,15)(17,18)(19,20), (12,14,15)(13,17,18), (16,19,20)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_2\times C_3:(C_3^3:C_2).\PSL(4,3).C_2$
$\card{W}$\(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_6^4:(C_2\times S_4)$
Minimal over-subgroups:$C_2\times C_3^4:C_6$
Maximal under-subgroups:$C_3^3\times C_6$$C_3^3:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$