Properties

Label 62208.g.3888.A
Order $ 2^{4} $
Index $ 2^{4} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(2\)
Generators: $\langle(4,5), (3,6)(4,5), (1,8)(2,7)(3,6)(4,5), (2,7)(3,6)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: not computed
Automorphism Group: not computed
Outer Automorphisms: not computed
Nilpotency class: not computed
Derived length: not computed

Properties have not been computed

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_3^4:C_2^3$
Normalizer:$C_6^4:(C_2\times S_4)$
Complements:$C_3^3:(S_3\times S_4)$
Minimal over-subgroups:$C_2^3\times C_6$
Maximal under-subgroups:$C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$