Properties

Label 62208.g.64.D
Order $ 2^{2} \cdot 3^{5} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^4:C_6$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(2,5,6)(3,7,4)(9,11,10)(12,18,19)(13,20,14)(15,17,16), (9,11,10)(12,14,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^4:(C_2\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3.C_3^5.D_6^2$
$W$$C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_3\wr C_3.D_6.C_2$
Normal closure:$C_6^3:(S_3\times A_4)$
Core:$C_3^3:D_6$
Minimal over-subgroups:$C_3^4.A_4.C_2^2$$C_3^3:(A_4\times D_6)$$C_3^3:(S_3\times \SL(2,3))$$C_2^2\times C_3^4:C_6$$C_2\times C_3^3:S_3^2$$C_2\times C_3^3:S_3^2$
Maximal under-subgroups:$C_3^3:D_6$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3:(S_3\times S_4)$