Properties

Label 6144.bb.8.F
Order $ 2^{8} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^3:C_{12}$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 15 & 24 \\ 8 & 23 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 7 & 16 \\ 16 & 7 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 21 \\ 7 & 28 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_4^2:C_3.D_4\times \GL(2,\mathbb{Z}/4)$
$W$$C_4^2:C_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4\times C_8$
Normalizer:$C_4^4.C_{24}$
Minimal over-subgroups:$C_4^4:C_6$
Maximal under-subgroups:$C_4^3:C_6$$C_4^3:C_6$$C_4^4$$A_4\times C_4^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_4^2:C_{24}$