Properties

Label 6144.bb.1.a1
Order $ 2^{11} \cdot 3 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Index: $1$
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 29 & 30 \\ 10 & 19 \end{array}\right), \left(\begin{array}{rr} 7 & 24 \\ 8 & 15 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 21 \\ 7 & 28 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 31 & 16 \\ 16 & 31 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and metabelian. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$
$W$$C_4^2:C_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4\times C_8$
Normalizer:$C_4^4.C_{24}$
Complements:$C_1$
Maximal under-subgroups:$C_4^4.C_{12}$$C_2^2\times C_4^2:C_{48}$$C_4^3:C_{48}$$C_4^4.C_8$$C_2^3:C_{12}\times C_{16}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_4^2:C_6$