Properties

Label 6144.bb
Order \( 2^{11} \cdot 3 \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{7} \cdot 3 \)
$\card{Z(G)}$ \( 2^{6} \)
$\card{\Aut(G)}$ \( 2^{19} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{14} \)
Perm deg. not computed
Trans deg. $384$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 24, 61, 98, 135, 41477, 95057, 31133, 23801, 7829, 209, 32262, 84690, 8094, 21210, 2070, 133639, 76051, 26527, 19051, 6679, 283, 217736, 5204, 54464, 1340, 13664, 288009, 74901, 72033, 18765, 18057, 357, 677387, 255767, 169379, 63983, 42395]); a,b,c,d,e := Explode([G.1, G.6, G.8, G.10, G.12]); AssignNames(~G, ["a", "a2", "a4", "a8", "a16", "b", "b2", "c", "c2", "d", "d2", "e"]);
 
Copy content gap:G := PcGroupCode(509873775914174022841184100850348418057930660757857287018008151124698500575189229469788339970638345840404177616022047779504533109656585288939049985897086475496517760,6144); a := G.1; b := G.6; c := G.8; d := G.10; e := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(509873775914174022841184100850348418057930660757857287018008151124698500575189229469788339970638345840404177616022047779504533109656585288939049985897086475496517760,6144)'); a = G.1; b = G.6; c = G.8; d = G.10; e = G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(509873775914174022841184100850348418057930660757857287018008151124698500575189229469788339970638345840404177616022047779504533109656585288939049985897086475496517760,6144)'); a = G.1; b = G.6; c = G.8; d = G.10; e = G.12;
 

Group information

Description:$C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:$C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$, of order \(1572864\)\(\medspace = 2^{19} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24 48
Elements 1 31 32 480 224 512 768 1024 1024 2048 6144
Conjugacy classes   1 15 2 112 14 128 48 128 64 128 640
Divisions 1 15 1 64 7 32 12 16 8 8 164
Autjugacy classes 1 7 1 16 3 9 4 2 3 1 47

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 16 24
Irr. complex chars.   384 0 128 0 128 0 0 0 0 640
Irr. rational chars. 8 20 8 20 28 16 32 8 24 164

Minimal presentations

Permutation degree:not computed
Transitive degree:$384$
Rank: $3$
Inequivalent generating triples: $43680$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: ${\langle a, b, c, d, e \mid a^{48}=b^{4}=c^{4}=d^{4}=e^{2}=[b,c]=[b,d]=[b,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 24, 61, 98, 135, 41477, 95057, 31133, 23801, 7829, 209, 32262, 84690, 8094, 21210, 2070, 133639, 76051, 26527, 19051, 6679, 283, 217736, 5204, 54464, 1340, 13664, 288009, 74901, 72033, 18765, 18057, 357, 677387, 255767, 169379, 63983, 42395]); a,b,c,d,e := Explode([G.1, G.6, G.8, G.10, G.12]); AssignNames(~G, ["a", "a2", "a4", "a8", "a16", "b", "b2", "c", "c2", "d", "d2", "e"]);
 
Copy content gap:G := PcGroupCode(509873775914174022841184100850348418057930660757857287018008151124698500575189229469788339970638345840404177616022047779504533109656585288939049985897086475496517760,6144); a := G.1; b := G.6; c := G.8; d := G.10; e := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(509873775914174022841184100850348418057930660757857287018008151124698500575189229469788339970638345840404177616022047779504533109656585288939049985897086475496517760,6144)'); a = G.1; b = G.6; c = G.8; d = G.10; e = G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(509873775914174022841184100850348418057930660757857287018008151124698500575189229469788339970638345840404177616022047779504533109656585288939049985897086475496517760,6144)'); a = G.1; b = G.6; c = G.8; d = G.10; e = G.12;
 
Matrix group:$\left\langle \left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 13 & 6 \\ 2 & 3 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 28 & 11 \\ 25 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 13 & 24 \\ 24 & 21 \end{array}\right), \left(\begin{array}{rr} 1 & 24 \\ 8 & 25 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/32\Z)$
Copy content comment:Define the group as a matrix group with coefficients in GLZq
 
Copy content magma:G := MatrixGroup< 2, Integers(32) | [[9, 0, 0, 1], [1, 8, 0, 1], [17, 0, 0, 1], [3, 0, 0, 3], [13, 6, 2, 3], [9, 0, 0, 9], [28, 11, 25, 3], [1, 16, 0, 1], [17, 0, 0, 17], [1, 16, 16, 17], [13, 24, 24, 21], [1, 24, 8, 25]] >;
 
Copy content gap:G := Group([[[ZmodnZObj(9,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(1,32), ZmodnZObj(8,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(3,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(3,32)]],[[ZmodnZObj(13,32), ZmodnZObj(6,32)], [ZmodnZObj(2,32), ZmodnZObj(3,32)]],[[ZmodnZObj(9,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(9,32)]],[[ZmodnZObj(28,32), ZmodnZObj(11,32)], [ZmodnZObj(25,32), ZmodnZObj(3,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(17,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(16,32), ZmodnZObj(17,32)]],[[ZmodnZObj(13,32), ZmodnZObj(24,32)], [ZmodnZObj(24,32), ZmodnZObj(21,32)]],[[ZmodnZObj(1,32), ZmodnZObj(24,32)], [ZmodnZObj(8,32), ZmodnZObj(25,32)]]]);
 
Copy content sage:MS = MatrixSpace(Integers(32), 2, 2) G = MatrixGroup([MS([[9, 0], [0, 1]]), MS([[1, 8], [0, 1]]), MS([[17, 0], [0, 1]]), MS([[3, 0], [0, 3]]), MS([[13, 6], [2, 3]]), MS([[9, 0], [0, 9]]), MS([[28, 11], [25, 3]]), MS([[1, 16], [0, 1]]), MS([[17, 0], [0, 17]]), MS([[1, 16], [16, 17]]), MS([[13, 24], [24, 21]]), MS([[1, 24], [8, 25]])])
 
Direct product: $C_2$ $\, \times\, $ $C_4$ $\, \times\, $ $(C_4^2:C_{48})$
Semidirect product: $(C_4^4.C_8)$ $\,\rtimes\,$ $C_3$ $(C_4^3:C_{16})$ $\,\rtimes\,$ $C_6$ $(C_4^3.C_8)$ $\,\rtimes\,$ $C_{12}$ $(C_4^3:C_6)$ $\,\rtimes\,$ $C_{16}$ all 12
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_4^4$ . $C_{24}$ $(C_4^4:C_6)$ . $C_4$ $(C_4^4.C_{12})$ . $C_2$ $(C_4^3:C_{24})$ . $C_4$ all 127

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{32}\Z)$.

Homology

Abelianization: $C_{2} \times C_{4} \times C_{48} \simeq C_{2} \times C_{4} \times C_{16} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{4}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 32100 subgroups in 7068 conjugacy classes, 405 normal (63 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2\times C_4\times C_8$ $G/Z \simeq$ $C_4^2:C_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: $G' \simeq$ $C_4^2$ $G/G' \simeq$ $C_2\times C_4\times C_{48}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^3\times C_8$ $G/\Phi \simeq$ $C_2^3\times A_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_4^4.C_8$ $G/\operatorname{Fit} \simeq$ $C_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_4^4.C_{24}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^5$ $G/\operatorname{soc} \simeq$ $C_2^3:C_{24}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^4.C_8$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $C_4^4.C_{24}$ $\rhd$ $C_4^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series $C_4^4.C_{24}$ $\rhd$ $C_4^3:C_{48}$ $\rhd$ $C_4^3.C_{24}$ $\rhd$ $C_4^3.C_{12}$ $\rhd$ $C_2\times C_4^2\times C_8$ $\rhd$ $C_4^2\times C_8$ $\rhd$ $C_4^3$ $\rhd$ $C_2\times C_4^2$ $\rhd$ $C_4^2$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series $C_4^4.C_{24}$ $\rhd$ $C_4^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2\times C_4\times C_8$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $640 \times 640$ character table is not available for this group.

Rational character table

See the $164 \times 164$ rational character table (warning: may be slow to load).