Subgroup ($H$) information
Description: | $C_4^3.C_{24}$ |
Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
29 & 30 \\
10 & 19
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
25 & 0 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
21 & 0 \\
0 & 21
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
8 & 1
\end{array}\right), \left(\begin{array}{rr}
9 & 8 \\
16 & 25
\end{array}\right), \left(\begin{array}{rr}
3 & 21 \\
7 & 28
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
Description: | $C_4^4.C_{24}$ |
Order: | \(6144\)\(\medspace = 2^{11} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_4^2:C_3.C_2^3.C_2^5$ |
$W$ | $C_4^2:C_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | not computed |
Projective image | $C_2^5.A_4$ |