Subgroup ($H$) information
| Description: | $C_2\times C_8$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$\left(\begin{array}{rr}
21 & 0 \\
0 & 21
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
16 & 1
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_4^4.C_{24}$ |
| Order: | \(6144\)\(\medspace = 2^{11} \cdot 3 \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^5.A_4$ |
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_4^2:C_3.D_4\times S_4$ |
| Outer Automorphisms: | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2^5.A_4$ |