Properties

Label 6144.bb.384.K
Order $ 2^{4} $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 16 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_4^4.C_{24}$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^5.A_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_4^2:C_3.D_4\times S_4$
Outer Automorphisms: $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(C_2^4\times C_{12}).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^4.C_{24}$
Normalizer:$C_4^4.C_{24}$
Minimal over-subgroups:$C_2\times C_{24}$$C_2^2\times C_8$$C_4\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$$C_4\times C_8$$C_2\times C_{16}$$C_2\times C_{16}$
Maximal under-subgroups:$C_2\times C_4$$C_8$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^5.A_4$