Properties

Label 6050.e.1210.a1.a1
Order $ 5 $
Index $ 2 \cdot 5 \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)
Exponent: \(5\)
Generators: $c^{11}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{55}:F_{11}$
Order: \(6050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}:F_{11}$
Order: \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Outer Automorphisms: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_5^2.(C_{20}\times D_4)$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{55}:F_{11}$
Normalizer:$C_{55}:F_{11}$
Complements:$C_{11}:F_{11}$ $C_{11}:F_{11}$ $C_{11}:F_{11}$ $C_{11}:F_{11}$ $C_{11}:F_{11}$
Minimal over-subgroups:$C_{55}$$C_{55}$$C_{55}$$C_{55}$$C_5^2$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$121$
Projective image$C_{11}:F_{11}$