Properties

Label 6050.e.5.b1.a1
Order $ 2 \cdot 5 \cdot 11^{2} $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:F_{11}$
Order: \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)
Index: \(5\)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, b, c^{5}, a^{2}c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{55}:F_{11}$
Order: \(6050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_5^2.(C_{20}\times D_4)$
$\operatorname{Aut}(H)$ $F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$W$$C_{11}:F_{11}$, of order \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_{55}:F_{11}$
Complements:$C_5$ $C_5$ $C_5$ $C_5$ $C_5$
Minimal over-subgroups:$C_{55}:F_{11}$
Maximal under-subgroups:$C_{11}^2:C_5$$C_{11}:D_{11}$$F_{11}$$F_{11}$
Autjugate subgroups:6050.e.5.b1.b16050.e.5.b1.c16050.e.5.b1.d16050.e.5.b1.e1

Other information

Möbius function$-1$
Projective image$C_{55}:F_{11}$