Properties

Label 6048.s.1512.a1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3^{3} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Exponent: \(2\)
Generators: $\langle(10,11)(12,13), (10,12)(11,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, abelian (hence metabelian and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $A_4\times \SL(2,8)$
Order: \(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3\times \SL(2,8)$
Order: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Automorphism Group: $\SL(2,8):C_6$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian, an A-group, and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times {}^2G(2,3)$, of order \(36288\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_2^2\times \SL(2,8)$
Normalizer:$A_4\times \SL(2,8)$
Complements:$C_3\times \SL(2,8)$
Minimal over-subgroups:$C_2\times C_{14}$$A_4$$C_2\times C_6$$A_4$$C_2^3$
Maximal under-subgroups:$C_2$

Other information

Möbius function$504$
Projective image$A_4\times \SL(2,8)$