Subgroup ($H$) information
Description: | $C_7:C_{28}$ |
Order: | \(196\)\(\medspace = 2^{2} \cdot 7^{2} \) |
Index: | \(3\) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$a^{7}, a^{14}, b^{3}, a^{4}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_{21}:C_{28}$ |
Order: | \(588\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{2} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_{42}:C_6^2$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(S)$ | $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Centralizer: | $C_{14}$ | ||
Normalizer: | $C_7:C_{28}$ | ||
Normal closure: | $C_{21}:C_{28}$ | ||
Core: | $C_7\times C_{14}$ | ||
Minimal over-subgroups: | $C_{21}:C_{28}$ | ||
Maximal under-subgroups: | $C_7\times C_{14}$ | $C_{28}$ | $C_7:C_4$ |
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $-1$ |
Projective image | $D_{21}$ |