Properties

Label 576.8673.3.a1
Order $ 2^{6} \cdot 3 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times C_2^4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(3\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3)(2,4)(5,7)(6,8), (1,4)(2,3), (1,4)(2,3)(5,8)(6,7), (12,13), (10,11)(12,13), (1,2)(3,4), (9,10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2^2:A_4\times D_6$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_2^4.(C_6\times A_5).C_2$
$\operatorname{Aut}(H)$ $C_2^5.\GL(5,2)\times S_3$, of order \(1919877120\)\(\medspace = 2^{16} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 31 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times C_6:S_5$, of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^2:A_4\times D_6$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_2^2:A_4\times D_6$
Maximal under-subgroups:$C_2^4\times C_6$$C_2^3\times D_6$$C_2^3\times D_6$$C_2^3\times D_6$$C_2^3\times D_6$$C_2^6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$S_3\times C_2^2:A_4$