Properties

Label 1919877120.a
Order \( 2^{16} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 31 \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 31 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $35$
Trans deg. $96$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (8,12)(10,15)(11,17)(13,19)(14,21)(16,23)(18,25)(22,28)(33,34), (1,2)(4,6)(8,10)(12,15)(13,16)(19,23)(20,24)(27,30)(33,34), (1,3)(2,5)(4,7)(6,9)(8,11)(10,14)(13,18)(16,22)(33,34), (1,4)(2,6)(3,7)(5,9)(8,13)(10,16)(11,18)(12,19)(14,22)(15,23)(17,25)(20,27)(21,28)(24,30)(26,31)(29,32)(33,34), (2,6)(5,9)(10,16)(14,22)(15,23)(21,28)(24,30)(29,32)(33,34), (33,34,35), (33,34), (4,8)(6,10)(7,11)(9,14)(12,20)(15,24)(17,26)(21,29)(33,34) >;
 
Copy content gap:G := Group( (8,12)(10,15)(11,17)(13,19)(14,21)(16,23)(18,25)(22,28)(33,34), (1,2)(4,6)(8,10)(12,15)(13,16)(19,23)(20,24)(27,30)(33,34), (1,3)(2,5)(4,7)(6,9)(8,11)(10,14)(13,18)(16,22)(33,34), (1,4)(2,6)(3,7)(5,9)(8,13)(10,16)(11,18)(12,19)(14,22)(15,23)(17,25)(20,27)(21,28)(24,30)(26,31)(29,32)(33,34), (2,6)(5,9)(10,16)(14,22)(15,23)(21,28)(24,30)(29,32)(33,34), (33,34,35), (33,34), (4,8)(6,10)(7,11)(9,14)(12,20)(15,24)(17,26)(21,29)(33,34) );
 
Copy content sage:G = PermutationGroup(['(8,12)(10,15)(11,17)(13,19)(14,21)(16,23)(18,25)(22,28)(33,34)', '(1,2)(4,6)(8,10)(12,15)(13,16)(19,23)(20,24)(27,30)(33,34)', '(1,3)(2,5)(4,7)(6,9)(8,11)(10,14)(13,18)(16,22)(33,34)', '(1,4)(2,6)(3,7)(5,9)(8,13)(10,16)(11,18)(12,19)(14,22)(15,23)(17,25)(20,27)(21,28)(24,30)(26,31)(29,32)(33,34)', '(2,6)(5,9)(10,16)(14,22)(15,23)(21,28)(24,30)(29,32)(33,34)', '(33,34,35)', '(33,34)', '(4,8)(6,10)(7,11)(9,14)(12,20)(15,24)(17,26)(21,29)(33,34)'])
 

Group information

Description:$C_2^5.\GL(5,2)\times S_3$
Order: \(1919877120\)\(\medspace = 2^{16} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 31 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(26040\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^5.\GL(5,2)\times S_3$, of order \(1919877120\)\(\medspace = 2^{16} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 31 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_3$, $\GL(5,2)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 10 12 14 15 21 24 28 30 31 42 62 84 93
Elements 1 238207 2904578 33985920 10665984 211676990 3809280 99993600 74661888 216980160 148561920 85327872 99041280 49996800 91422720 213319680 61931520 159989760 185794560 45711360 123863040 1919877120
Conjugacy classes   1 11 5 20 1 25 2 6 3 19 10 5 6 3 4 9 6 6 6 2 6 156
Divisions 1 11 5 20 1 25 1 6 3 19 5 3 3 3 2 5 1 3 1 1 1 120
Autjugacy classes 1 11 5 20 1 25 2 6 3 19 10 5 6 3 4 9 6 6 6 2 6 156

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 30 31 60 62 124 155 217 248 280 310 315 434 465 496 560 620 630 651 868 930 960 992 1024 1085 1240 1302 1395 1736 1860 1890 1920 1984 2048 2170 2480 2604 2790 3255 3472 3720 3780 3968 4340 5580 6510 7440 9765 13020 19530
Irr. complex chars.   2 1 2 2 1 1 2 2 4 1 2 1 12 4 10 2 1 2 6 12 5 11 2 1 2 2 3 6 8 4 3 0 1 2 1 3 1 0 6 6 1 2 0 1 1 1 5 1 4 1 2 156
Irr. rational chars. 2 1 2 2 1 1 2 2 4 1 2 1 0 4 2 2 1 2 0 4 5 7 2 1 2 2 3 6 0 4 5 2 1 2 1 3 1 2 6 6 1 3 1 1 1 3 5 1 4 1 2 120

Minimal presentations

Permutation degree:$35$
Transitive degree:$96$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 62 62 62
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $35$ $\langle(8,12)(10,15)(11,17)(13,19)(14,21)(16,23)(18,25)(22,28)(33,34), (1,2)(4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (8,12)(10,15)(11,17)(13,19)(14,21)(16,23)(18,25)(22,28)(33,34), (1,2)(4,6)(8,10)(12,15)(13,16)(19,23)(20,24)(27,30)(33,34), (1,3)(2,5)(4,7)(6,9)(8,11)(10,14)(13,18)(16,22)(33,34), (1,4)(2,6)(3,7)(5,9)(8,13)(10,16)(11,18)(12,19)(14,22)(15,23)(17,25)(20,27)(21,28)(24,30)(26,31)(29,32)(33,34), (2,6)(5,9)(10,16)(14,22)(15,23)(21,28)(24,30)(29,32)(33,34), (33,34,35), (33,34), (4,8)(6,10)(7,11)(9,14)(12,20)(15,24)(17,26)(21,29)(33,34) >;
 
Copy content gap:G := Group( (8,12)(10,15)(11,17)(13,19)(14,21)(16,23)(18,25)(22,28)(33,34), (1,2)(4,6)(8,10)(12,15)(13,16)(19,23)(20,24)(27,30)(33,34), (1,3)(2,5)(4,7)(6,9)(8,11)(10,14)(13,18)(16,22)(33,34), (1,4)(2,6)(3,7)(5,9)(8,13)(10,16)(11,18)(12,19)(14,22)(15,23)(17,25)(20,27)(21,28)(24,30)(26,31)(29,32)(33,34), (2,6)(5,9)(10,16)(14,22)(15,23)(21,28)(24,30)(29,32)(33,34), (33,34,35), (33,34), (4,8)(6,10)(7,11)(9,14)(12,20)(15,24)(17,26)(21,29)(33,34) );
 
Copy content sage:G = PermutationGroup(['(8,12)(10,15)(11,17)(13,19)(14,21)(16,23)(18,25)(22,28)(33,34)', '(1,2)(4,6)(8,10)(12,15)(13,16)(19,23)(20,24)(27,30)(33,34)', '(1,3)(2,5)(4,7)(6,9)(8,11)(10,14)(13,18)(16,22)(33,34)', '(1,4)(2,6)(3,7)(5,9)(8,13)(10,16)(11,18)(12,19)(14,22)(15,23)(17,25)(20,27)(21,28)(24,30)(26,31)(29,32)(33,34)', '(2,6)(5,9)(10,16)(14,22)(15,23)(21,28)(24,30)(29,32)(33,34)', '(33,34,35)', '(33,34)', '(4,8)(6,10)(7,11)(9,14)(12,20)(15,24)(17,26)(21,29)(33,34)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^5.\GL(5,2))$ . $S_3$ $C_2^5$ . $(S_3.\GL(5,2))$ $S_3$ . $(C_2^5.\GL(5,2))$ $(D_6\times C_2^4)$ . $\GL(5,2)$ all 7
Aut. group: $\Aut(D_6\times C_2^4)$

Elements of the group are displayed as permutations of degree 35.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 9 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
31-Sylow subgroup: $P_{ 31 } \simeq$ $C_{31}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $156 \times 156$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $120 \times 120$ rational character table.