Subgroup ($H$) information
| Description: | $C_2^3\times D_6$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(12,13), (9,10,11), (1,4)(2,3)(5,8)(6,7)(10,11)(12,13), (1,3)(2,4)(5,7)(6,8), (1,4)(2,3), (1,2)(3,4)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $C_2^2:A_4\times D_6$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times C_2^4.(C_6\times A_5).C_2$ |
| $\operatorname{Aut}(H)$ | $C_2^4.A_8\times S_3$, of order \(1935360\)\(\medspace = 2^{11} \cdot 3^{3} \cdot 5 \cdot 7 \) |
| $\operatorname{res}(S)$ | $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $15$ |
| Number of conjugacy classes in this autjugacy class | $5$ |
| Möbius function | $0$ |
| Projective image | $S_3\times C_2^2:A_4$ |