Subgroup ($H$) information
Description: | $A_4:C_8$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
35 & 24 \\
9 & 73
\end{array}\right), \left(\begin{array}{rr}
1 & 42 \\
42 & 1
\end{array}\right), \left(\begin{array}{rr}
43 & 0 \\
42 & 43
\end{array}\right), \left(\begin{array}{rr}
13 & 72 \\
48 & 1
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
22 & 77 \\
21 & 1
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6.\GL(2,\mathbb{Z}/4)$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Centralizer: | $C_4$ | ||
Normalizer: | $A_4:C_8$ | ||
Normal closure: | $C_{12}.S_4$ | ||
Core: | $C_2^2\times C_4$ | ||
Minimal over-subgroups: | $C_{12}.S_4$ | ||
Maximal under-subgroups: | $C_4\times A_4$ | $C_2^2:C_8$ | $C_3:C_8$ |
Other information
Number of subgroups in this conjugacy class | $6$ |
Möbius function | $0$ |
Projective image | $D_6:S_4$ |