Properties

Label 576.5071.6.k1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:C_8$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 35 & 24 \\ 9 & 73 \end{array}\right), \left(\begin{array}{rr} 1 & 42 \\ 42 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 42 & 43 \end{array}\right), \left(\begin{array}{rr} 13 & 72 \\ 48 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 22 & 77 \\ 21 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6.\GL(2,\mathbb{Z}/4)$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$A_4:C_8$
Normal closure:$C_{12}.S_4$
Core:$C_2^2\times C_4$
Minimal over-subgroups:$C_{12}.S_4$
Maximal under-subgroups:$C_4\times A_4$$C_2^2:C_8$$C_3:C_8$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_6:S_4$