Subgroup ($H$) information
Description: | $C_{12}.S_4$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(2\) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
35 & 24 \\
9 & 73
\end{array}\right), \left(\begin{array}{rr}
43 & 0 \\
42 & 43
\end{array}\right), \left(\begin{array}{rr}
1 & 56 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
13 & 72 \\
48 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 42 \\
42 & 1
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
22 & 21 \\
21 & 1
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6.\GL(2,\mathbb{Z}/4)$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Centralizer: | $C_4$ | ||||
Normalizer: | $C_6.\GL(2,\mathbb{Z}/4)$ | ||||
Minimal over-subgroups: | $C_6.\GL(2,\mathbb{Z}/4)$ | ||||
Maximal under-subgroups: | $C_{12}\times A_4$ | $C_{12}.D_4$ | $A_4:C_8$ | $A_4:C_8$ | $C_3^2:C_8$ |
Other information
Möbius function | $-1$ |
Projective image | $D_6:S_4$ |