Properties

Label 576.5071.1.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.\GL(2,\mathbb{Z}/4)$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 23 & 48 \\ 33 & 5 \end{array}\right), \left(\begin{array}{rr} 22 & 21 \\ 21 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 56 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 35 & 24 \\ 9 & 73 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 42 \\ 42 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 42 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 36 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $C_6.\GL(2,\mathbb{Z}/4)$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$D_6:S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6.\GL(2,\mathbb{Z}/4)$
Complements:$C_1$
Maximal under-subgroups:$A_4\times C_3:Q_8$$C_{12}.S_4$$C_{12}.S_4$$(C_2\times C_6):Q_{16}$$A_4:Q_{16}$$C_3^2:Q_{16}$

Other information

Möbius function$1$
Projective image$D_6:S_4$