Properties

Label 54000.c.3600.l1
Order $ 3 \cdot 5 $
Index $ 2^{4} \cdot 3^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{2}d^{20}, c^{6}d^{6}e$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_5^3:C_3^2:S_3$
Order: \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_4\times S_3^2)$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{15}$
Normalizer:$C_3^2\times D_5$
Normal closure:$(C_5\times C_{15}^2):A_4$
Core:$C_1$
Minimal over-subgroups:$C_5\wr C_3$$C_3\times C_{15}$$C_3\times D_5$
Maximal under-subgroups:$C_5$$C_3$

Other information

Number of subgroups in this autjugacy class$600$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3:C_3^2:S_3$