Subgroup ($H$) information
| Description: | $C_{15}$ |
| Order: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Index: | \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Generators: |
$a^{2}d^{20}, c^{6}d^{6}e$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $D_5^3:C_3^2:S_3$ |
| Order: | \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^3.C_6^2.(C_4\times S_3^2)$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $600$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $D_5^3:C_3^2:S_3$ |