Subgroup ($H$) information
Description: | $C_3\times D_5$ |
Order: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Index: | \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$bd^{15}e, c^{6}d^{6}e, a^{2}d^{20}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_5^3:C_3^2:S_3$ |
Order: | \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^3.C_6^2.(C_4\times S_3^2)$ |
$\operatorname{Aut}(H)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
$W$ | $D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
Centralizer: | $C_3^2$ | ||
Normalizer: | $C_3^2\times D_5$ | ||
Normal closure: | $D_5^3:\He_3$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $C_5^3:C_6$ | $C_3^2\times D_5$ | |
Maximal under-subgroups: | $C_{15}$ | $D_5$ | $C_6$ |
Other information
Number of subgroups in this autjugacy class | $600$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $D_5^3:C_3^2:S_3$ |