Properties

Label 54000.c.4.a1
Order $ 2^{2} \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times C_{15}^2):A_4$
Order: \(13500\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{2}, c^{15}d^{9}e, d^{6}, c^{20}d^{20}, c^{6}, e, d^{20}, bd^{24}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3:C_3^2:S_3$
Order: \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_4\times S_3^2)$
$\operatorname{Aut}(H)$ $C_5^3.C_6^2.(C_4\times S_3^2)$
$W$$D_5\wr C_3\times S_3$, of order \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$D_5^3:C_3^2:S_3$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_5^3:(C_6^2:C_6)$$D_5^3:\He_3$$C_5^3:(C_6^2:C_6)$
Maximal under-subgroups:$C_3^2\times C_5^3:C_2^2$$C_3\times C_5^3:A_4$$C_3\times C_5^3:A_4$$C_{15}^2:C_{15}$$C_3^2:A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$D_5^3:C_3^2:S_3$