Subgroup ($H$) information
Description: | $(C_5\times C_{15}^2):A_4$ |
Order: | \(13500\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{3} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$a^{2}, c^{15}d^{9}e, d^{6}, c^{20}d^{20}, c^{6}, e, d^{20}, bd^{24}$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $D_5^3:C_3^2:S_3$ |
Order: | \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^3.C_6^2.(C_4\times S_3^2)$ |
$\operatorname{Aut}(H)$ | $C_5^3.C_6^2.(C_4\times S_3^2)$ |
$W$ | $D_5\wr C_3\times S_3$, of order \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $2$ |
Projective image | $D_5^3:C_3^2:S_3$ |