-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '54000.c', 'ambient_counter': 3, 'ambient_order': 54000, 'ambient_tex': 'D_5^3:C_3^2:S_3', 'central': False, 'central_factor': False, 'centralizer_order': 3, 'characteristic': True, 'core_order': 13500, 'counter': 7, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '54000.c.4.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '4.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '4.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 4, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^2', 'simple': False, 'solvable': True, 'special_labels': ['C2', 'C2'], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '13500.j', 'subgroup_hash': 2667152778497095338, 'subgroup_order': 13500, 'subgroup_tex': '(C_5\\times C_{15}^2):A_4', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '54000.c', 'aut_centralizer_order': None, 'aut_label': '4.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '18000.a1', 'complements': ['13500.f1', '13500.a1', '13500.e1', '13500.c1', '13500.l1'], 'conjugacy_class_count': 1, 'contained_in': ['2.a1', '2.b1', '2.c1'], 'contains': ['12.b1', '12.c1', '12.n1', '16.a1', '500.b1'], 'core': '4.a1', 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [2, 14220, 2160, 7440, 72, 10800, 7200, 8646], 'label': '54000.c.4.a1', 'mobius_quo': 0, 'mobius_sub': 2, 'normal_closure': '4.a1', 'normal_contained_in': ['2.a1', '2.b1', '2.c1'], 'normal_contains': ['12.b1', '12.c1'], 'normalizer': '1.a1', 'old_label': '4.a1', 'projective_image': '54000.c', 'quotient_action_image': '4.2', 'quotient_action_kernel': '1.1', 'quotient_action_kernel_order': 1, 'quotient_fusion': None, 'short_label': '4.a1', 'subgroup_fusion': None, 'weyl_group': '18000.d'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '9.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 60, 'aut_gen_orders': [4, 30, 10, 12], 'aut_gens': [[1, 3, 18, 540, 2700], [1637, 4593, 2898, 7560, 4860], [5903, 12813, 2514, 540, 11340], [545, 7842, 13443, 5076, 216], [11333, 15, 4029, 8532, 8100]], 'aut_group': None, 'aut_hash': 8717420453910764587, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 648000, 'aut_permdeg': 1800, 'aut_perms': [4122431395806148972264668595510831119366610144626203534378097915361094932816214553133490404003955952204202157510396755882569972821917505238080029050720928284840952385778970147273470123820185593951498481809826210797951779907603405541629636315417809537303983539963912948585715162014612547254030308724289526787168811941457688250868014532920051860748991216434242571874198647466738744680690659091449964289893194794558869987385540634347061342214504997088293082952783073888821984856863076355083607581204406872097562753632809473842085730582042594995037750689045686674898784806991767018346323907074249600002498315100684957193262497133680042711944547027301304269793828082006632646009933683089553877726327984287375930122483431337371811945747177454502382441519983882092495505794150822169887249210966010531264986192206006985002639827281270598347480471887751438570040167205006798756634371690126495286395737409904764229121253537583973398421545220888073650912145033216643178358363093419024137844838653097801840324462094696120924500885108443167248584463981422530847069913470481379597336300026779602791949292464702549650264515961015285745711996145809991953868923340351724420511638948352502209401290223998399549104197117773495083246449831368469162132221244360801438416209967683191077055307513348602390408394127614611569374902056214883250969542972427041878874267743809436017444748836792437888558291528522643820659842454203114983422900528479079524250916415236388860250528075096110707689035297880332803038257243192193158998908923700211381868282992112316771793932977068888264079186638927878409403717976189462033325431177584847904126455111526518819235461730056020833192693677456903456722420106756823608142820078362664456379937394124872460029220295912205617698403024431919127862321744919950229656601113686813837038306304058661685145488019172524019142110598650954207375931988203132847721986570682453951842773390966495522537858810624111100049816703701229406049126522286213253740229049366272073301475944465130406769656273980335876568725566328907828000719851985555439374948874720240107839098765726307654880074185546854153047362619354325293085835440555785932870067823298595965521375489813467239418275621439520374400839861563992362538779920860120549199828199964879677722367436095476200308717500360850042781960396652228471470347109297432427228341257598578070160367929959609982707328244463650712510004893540399372175477892277651014790248485290245238847606155948915751614039721007863256767450108053769776249968977916635675457768342304195726343554098789127839718654018040623783272836199118040864638866569743737874705495111248933853997846352192865785984205793782251785235720653226003775627575550970319423986597315046646861010836005910908914280004302266330570442898284833391405545429489193061775886580185207177854591131760560908777399225313980128525522861484507818915651299132900910470106809255911940672441326921505788141631523568575443306700742157321745578991762862539626312606683302440245057691269372232034203412718456192582456691994614052881483502488546381326702357962939657478937993379047119524036683023739410261678793740714189160502955863151871272404637479138658305342790240052559622559025874285405787117828859311077744160873451187195946366098986181340258912642757639653923382746345943808552199480160306446066131351458651768152403447053444494611169672713952183691912273225822825480290674466509613920473741403630738631328313418889928928278946510326852820702782460709557481534472716727607567003583788196864743296382475339610400709657842129414232913987309759960583730476178006614641810244147011940831424298349256291693946900359978268565405248337481582444521770348862960420233444634787357255838803743647451870713377971117193121366465939281534830393807236432055422530812091611990654883453302954530433376983850301821328972490137820121647353180818953667741340698479284022655596900448230677738649525502802079434945907917019067197487920552313421827137140710918675907445138615227015685426412181011517011358571373517851440941799316343950089192901785949529880285065015953320594751060063007547129283457555007234791555875421318528607997029005314068338179380002903143794247664932812154403411960693234817404387024969132027750759477895599032270799466895726463420374281458227228620692814327193019863765182516846506534269545756856834442027451859914052098226863773062253815595719788370580844117837392189926391159709103604561959677187141611651804198923995794689316790654841367925255357078312830343373092050219027404453293954995730579553791339092931670757051668043649437565694309826206522895485027290920046760657134059004261077682880856750043941405243804798849950758477316508013342880705655706465311359648999857070788953152695994103460446428471971732315256714007268224642156749417133001308365569572810324715107089634956468505148507413375581482656316121880233348615792801632901782433072703414809771619607915296657941208648979487698518803473884285778610932241330839750564470666445957965969407240323857642740051688455029555770484983390380800628045652049764072314209712032094075123122734773128665456919532236151281413311589973487543062625, 2581497288658391560108979809117738620958879936620819885436663690997319159278417347967075641453875876771613805831540359316412045109365163110933783952434801979594247166314657639197087680638730639119616273373686156526214892374726063157247946712608985300755222871138738820413672986924236273194051974503270956934027941867881941915656988489765608409872570595160275684463749235146655275681648534025248345391525298543629931987620360507831573075880145012437629832051266855198544191212926483214800055058171605543970296255196484474214345522800142580675731491902406681005299665142311123459398313620060188887834266460320249198457008156914973958416295532850826958392804159680207114936887042707936784232657713650109736398756900345278558269948216293554511918558296696633011327363155245684875818905830511898679865228402105007044389222108533102770610474759628043039224137763386704455402299675151933448760392682316179043099836885853811203817495625990018413007602575263538229620234516594450187024770322304437572361217216235760670074842302282778269554099918524981042607948991964999340578076264069976911812110420012817870959472637451360527062509426867879612015034247807116037073724450526116596704503253166745067923859831102209685233341463937048167150017039650351083675643784237984501963720504109007821097479497006476810905581760889981198429695874407838058686519741419576679511346493642670497834904131689187994262044630098691165377921569859496572935445632497110421661370944197035058525760859764670738201025353123079682345683626850489068531008999165722515785508472759638497700267593541087226067825958080366748523092797802647082541496865145504190606120133315291066619604633006595393873415520609250459182720671286867730822962641290854647227484839493735536101543345178964110709759935970055762929229268988036578219681877487228807360435785598404173370971521156020312585408867309027094323805878214785423146810210824405623856976983101864100455345053810196910250143989891285623706831897034446298509289581693308949536537592627739927556376661267053304600480445852937015425924959635138904070907509519879307931927561703367151328069915649516139450599526092252804121416846336648492743836112592670689456263266516890324191648652732879581891599272220795956490508908117122632497781467534403720342684170233480880420690406078453387976762476338103266012452579093848684444856678894870132139006981033605315431817813114796920138580359103573016397889639047934591208046007744473080318625238742218514664251403290198199542991608076474827448240082374073747010099295067997604866829937374971970235589421121472598567713943179068087176626464264044814018852008669842137336834723554364226948549809666735378403158894194013781407172589626351343822069821696867416416262831724995471145777531612459133555761615758662028100872327796857085496608817896697793822896377450852221218608050939351416635605734747280117721678577067464635212366145928742578330463836766189394931887095890315201064088050706883247219220447152760313900142670127570693530125500681606116132308969459516703343223529159642072366929537198634026792905094103135995747891614152835755913022810475029704795966479166577312325458241601374785503013609095414098785398956509306216707965217553373677612858722295903885242021427488825307227582942306900651807716425814108237662723399753579165699183221528217043524192859466249609440229186325748767885001682464681632745844304603009074076321708795766017384570836769329170973576252970022588951743731062500846513821534285973339965983246563568003527267443674152996214340853150343385261625120628005811039258343972016658286367939760591388399793627502371393636659963656962171200621720249362051197807503511558123354060632853651739455091773336660538948131955187667812895849035154022696208786718212504277121789372306676883702024514235375008741150617556255132420998082076802872416005592350454960922221201445087119319537683390396472915790903563514622890688708821081096615668245187795685984810137674422482145656268819726005504644800107601556203917034777215524069426502779125162557047238754318721162381855428440324172733775756267371245810530682260481829087090917822882810084560983071747016327905307378552357639022086153806703738421797819773925639950798349981870983910449783568928994924656512517503061577527038613014168187351368022507788781697296840083139877827590390211989461318989208854183304551478263142637397867087022479222409137056920714053644926599329464577483933580176769214313972926210285234411007987930748201195685715836993735972058685545556729748704491354390595933615669579420830411189206093040202943738748424716209148005153969184781614944994414465217545464737149410698594677323590099402124677158799425483032642273812849724809664138961436746780635205288171503117813423788577821323425937444337646521260041080735587647151052576055595126567818902956012721410101425425962244590803686611760557663004339959956346395925015297680834134424941673969417504059289616070031102781568777820080177421549261338254762301156419232624962287894488279832794631359368888560018897775008778733240194846533130142716429096892118534766336557497899548570045977738377762060754953342, 2909133009489018088565801603197171830074712558475631999871007086221205486454399764842079707159071330507928651292797522378820974530021142900234575670424057467790027659800482073026438504060229646888506572527512521942606216342190568099267494878363274556842573865614031430950316672743025389689162859547343655150436801552985058697118890875844366827994737761530061226823434332027483283340985644293934059628909452348482326129863744355176954843928920006763096116314144846877099639498188774881768709618932588025500202068860588040345238167298429025218673471526828211660184909663172462963075119780899405166132229216788072593528490621800877907942196963710314060512275561892212746752408152738341575090165769372362962823973737022102826831151018195136866965063614475617084549686387043554577034637463859413763798457194980086181655665330886290930669185834524675880297094614410801640576902806838772154783825562653208549605217865169692385749361292738136858771746931070728452592896569165286181322767245116662077662210517353598133382319499363943955040142205011087320697145028820932718847994676431283920504698172356624563395964378416621390320115625698999506531727011478611921614469729117596387121408119824996046690052907901908175058845045945312381372475240009913687771152761184836308629314847209841013280601132393781253646649306553609246100593762982518963977641996349137124627439259812131929169454956688584390020262674246397399800545324300032563310025273633423765909197574653916983385408856018546395858297441970709153055012771213223911046052931183708178311666071732998920914921365835119152039173754291689861737524902494474090962543014865469020819752488910880173093146935989545391814129224780668774401920417999500786075973082068477922955887730271064151711014424700948647827768652103316799005155930681563943897010355939203887449445315416001174610549239841042185006426874012101776669491766700064136383537652461649275954571087762529699128301083296523830960210717367902944988743383830188939063720992655091083352563396387641667971071898145293121306741502014323369347334099762024288087751259781552343936909816459820815346430511191523863015472197354529614892739345602449870505092080687281968032776942600076022568671181964939802720540283555092181912045781436697459783020254861335102856940220800359141590862156176679514810592152721772216181247773608590794094230104206545422843869394029509335110370562649611306846758957508448298735850514754602176152122187681777912818450509345714386271348243742120190179473159382227692736483941166957579176802584136866468488902229757789050679245453175201350921581085853726575529069001246230416589893993598298953102910682040211957643610472628299449251826658402094417238459029829038542650061976362827084720334804451995508986481797463315623991996172708526578944795848804522234522102243483116290024787373828184061321904951960330411926837030623254789186011273925725534559955071022986805554662251917633821992459184881702948019935962641037871995396605125380538739323206440130868836664120299214547334789817837525646285713276208768116843342990586721925841425408978645921039315596031456150529840609217184255456978674643069534593415008440294812461505314931338152542316125100504211252298413608308737996257923435029496999162212828533458539945890726425382670884469295505122591923130138614647398962024208035420587483829053179529825474536178594177578704276268599299534642699730821457209628160346655567734387528022601877636227889618443782955781336554576150547369481012604511033394218035979275025350487914611573875702791162824113433022106129126029908538754397179913453607086673531728458665103276238128373776141336638649690165050288560797272323231363443449951421912298785707900841549493632801023366024550446851849975036734039860984297713333312819919854665251267618927424171791015827026023548342704639217885140487970503211287880886286531637921236640811586277745965870860531880633090115365388455290107211587665332684704621224007636925035446287602165047040187133982222786927956744702296871074408105443086879966223444717401533131957753690088682790608351457792539713194690374706584802163566654392866319962699032665875686772657589094761288734005323770806365830068086454467193373886641992715196083914026265153773833241347146066289559901204855095853245901008914732546837447648517392706589350865881362939625078616959772512475783485619017297116825144573640358673259075179413820171437946185274889787029173073998956189150864300962773444837052289077166741407629898637528546052558798711559418135778687927805721044890498892991672801844901482197525616698492522122108817656361579427495830997787574810058070279452876000389207209557182762540507853772131616857290907937753865985821159030963050077266414455146613933400343741697334306717232797958601145773130156396447051247895481825385017824470636403999933002642327937022535252252562232405324873772838711135379680458023462254467388913218249579640789986828878455394247568117887533732767846450027696090114136549978670196495875054424921412875706303952040560346103695260820444887989636751738229294148008484638534610563275839053237569149451015397645112372545969373522313727228, 5121723809818221995886255584127264108733725572260933073500268923868324320534067248467309285319634612176546590620710964184063743647740345588336117007042997646360204011878642348250349951255325011045648760592852449931797635781715111705299198711597952632133283488741398311071765319853545446863671620294451226025465944707482938244822311496571215537576776531826729070851487276950486758385488028942440085720763180543257715156577424366450465407484512501281633959441400114945207551512758806685522136825299787510096709912744748232376870269540790519965170266131712420462088112910879009580861252776718671189321881181391902676416165005572804766991301701963220927759510737201838218922254548587088038021097622160643421465423367463842763805263813345110610766502066988858540273422746986874320186315952103842287444025890720446603593402103267152653797519926014338194564683066948438583930688064504906376258736353559643100790794556199206250755406613984407021658012309944405532684421098395634973954874477360895439162530837867247420714463077851800388110533789457413621646228555528665456591994384326156997677492303475585354193002018749098699129668269231122704717231649439858868179338156269582706116630846929918692932232827664368446972467997114363171253024153527741881067308910883387740760720070260677668108095418157756232933187977781945195993574914694949164190723808832633362236341910967929333699690948382417903474454799932899813870820074055040274733809231375817978392784567522800812342196762087965041907264192372535875649021696240093100693558062930768854918987752028058984409544555974162272818228347317805702895814182274260532274049178552842651490179413764714631583211085313077321186440925603818752752212819148564737783510068647334888353122721040109613033795714512093987328513741356562630830076211257693497037824270005137494022702934103950330477516565294660127271247630183829867639595129661426090797960504047074493846174649306942734327416540132400034450002083591543272633443230753548853522955235951533346711993044197966881254684743026329411120831277507440617411848125518978181549654788970950116525559237723608752036560168667077921291280112685177738383511902064150005702902502530803807551180751079187941077330137499907873720601778146574786323610566366239801874036731475005805018027062380313427663725969794647121590706752533125394297703883241956062688338747987853857102691843361724933107901013443098779072102587058034408925308872213795618035547412382607095904608002683408965776846345062727791826708706665501068312380563380416425031595775693886329342568166776494667099736698822181645445119938942913376491547710585030401659257087923366184420973298892105407180970662667263369454063659275080510309524952617013894180013015979013223074348916564926375550293064802454696604550992469969774918066604763615503087121405424384395730292491363314881436357491769409855005530004463284324719442099171864328170849973553798671614363935430088169017251416488331297457227402468597123478941556750416884677467761240576592980222000529302238698298428210608610120149313216003930651999916174088122774464695728284375028703739868133610312375142335141514912997567065698006880458491915480485645281496499485734510937936441743970620420100483136762954624034198090314391964594941562104952257626588983446369511299724783939374838120454988180093266016241266469082394777590624988718743427820307845432851637370837072868827878104004227428892163627541162441624186342344927800377267213302535381731032618708381803423100551811219240770298246100860148256215695458907295037084944780625216784269285831680389683531970852682144689743410891792422723417321454971303958803951453952672774240126677369530123092272480687505699495752717580596698814528010141894371197649492370950190556816055049959817509561666662564704421102976221029682417227592755150681346839709099206826834479572486097929316314468966885849517338156218224749545926311291488500364610433720304401923287041645692699779739268549883872710197078892584693522202595883514531954591703045476233115753884623263084744556270964078191629161192833270968591069263083793453599149236341581750718634300496276129373655388377469934257986931507210645372551161842544974596323975925983402464431315926815987147146697939088334546112345896564221148278071184977905569927634681851687833177269488143000659012556226229206845091964075539185094630323125383075951403915127745273674476939372673315702777994783495451680536401102489665122388313579474943534639814700415280343887608573461203242143732239060954028623219131098068305738826435804118576905636401270188933748776847917764570166509982512236749036866653705335020485272608660231613301836187872070339254826815055254230124789215947966459254072370496546847247382047884178587852144278783368629700433533359335749329621133553919925315746581356813278317904870959427845513954681234809839900238809545535510326279727803959464572377660594160097947518306656956323119251526287928857015383676900078398618325494762042188412795116284304037034331478262328600941997906501811795182942133967282189731968631011151103210010419426815045261196941540169433545135906973381944577130507964850935385738339110], 'aut_phi_ratio': 180.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 75, 1, 1], [3, 1, 2, 1], [3, 3, 2, 1], [3, 300, 6, 1], [5, 4, 4, 1], [5, 6, 2, 1], [5, 12, 2, 2], [5, 12, 4, 1], [6, 75, 2, 1], [6, 75, 6, 1], [10, 150, 2, 1], [15, 4, 8, 1], [15, 6, 4, 1], [15, 6, 12, 1], [15, 12, 4, 2], [15, 12, 8, 2], [15, 12, 12, 2], [15, 12, 24, 1], [15, 300, 24, 1], [30, 150, 4, 1], [30, 150, 12, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_5^3.C_6^2.(C_4\\times S_3^2)', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 3, 'autcent_group': '9.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 9, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_3^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': '72000.e', 'autcentquo_hash': 5491886435751597828, 'autcentquo_nilpotent': False, 'autcentquo_order': 72000, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_3\\times D_5^3.D_6', 'cc_stats': [[1, 1, 1], [2, 75, 1], [3, 1, 2], [3, 3, 2], [3, 300, 6], [5, 4, 4], [5, 6, 2], [5, 12, 8], [6, 75, 8], [10, 150, 2], [15, 4, 8], [15, 6, 16], [15, 12, 72], [15, 300, 24], [30, 150, 16]], 'center_label': '3.1', 'center_order': 3, 'central_product': False, 'central_quotient': '4500.r', 'commutator_count': 2, 'commutator_label': '1500.154', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '3.1', '3.1', '5.1', '5.1', '5.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 10, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 75, 1, 1], [3, 1, 2, 1], [3, 3, 2, 1], [3, 300, 2, 3], [5, 4, 4, 1], [5, 6, 2, 1], [5, 12, 2, 2], [5, 12, 4, 1], [6, 75, 2, 4], [10, 150, 2, 1], [15, 4, 8, 1], [15, 6, 4, 4], [15, 12, 4, 8], [15, 12, 8, 5], [15, 300, 8, 3], [30, 150, 4, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 124, 'exponent': 30, 'exponents_of_order': [3, 3, 2], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[6, 0, 24], [12, 0, 56]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '4500.r', 'hash': 2667152778497095338, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 30, 'inner_gen_orders': [15, 2, 30, 5, 5], 'inner_gens': [[1, 6222, 11793, 2916, 216], [8380, 3, 11682, 7560, 2700], [124, 5079, 18, 2160, 10800], [11665, 9183, 1098, 540, 2700], [3025, 3, 5418, 540, 2700]], 'inner_hash': 7454132386623047984, 'inner_nilpotent': False, 'inner_order': 4500, 'inner_split': True, 'inner_tex': 'C_3\\times C_5^3:A_4', 'inner_used': [1, 2, 3], 'irrC_degree': 6, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 12, 'irrep_stats': [[1, 9], [3, 11], [4, 36], [6, 36], [12, 80]], 'label': '13500.j', 'linC_count': 24, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 18, 'linQ_degree_count': 8, 'linQ_dim': 18, 'linQ_dim_count': 8, 'linR_count': 28, 'linR_degree': 12, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': '(C5*C15^2):A4', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 26, 'number_characteristic_subgroups': 10, 'number_conjugacy_classes': 172, 'number_divisions': 42, 'number_normal_subgroups': 13, 'number_subgroup_autclasses': 122, 'number_subgroup_classes': 198, 'number_subgroups': 8038, 'old_label': None, 'order': 13500, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 75], [3, 1808], [5, 124], [6, 600], [10, 300], [15, 8192], [30, 2400]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 6, 12], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[3292, 9195, 12618, 2160, 10800], [11066, 3, 5607, 11124, 10800], [2647, 6222, 2295, 8208, 108]], 'outer_group': '144.143', 'outer_hash': 143, 'outer_nilpotent': False, 'outer_order': 144, 'outer_permdeg': 10, 'outer_perms': [41064, 403201, 1708], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4\\times S_3^2', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 24, 'pgroup': 0, 'primary_abelian_invariants': [3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 4], [3, 1], [6, 5], [12, 2], [16, 1], [24, 10], [32, 4], [48, 9], [96, 5]], 'representations': {'PC': {'code': '609282065339883359230346695175250061347968064521276045230187388716233225094271', 'gens': [1, 2, 4, 7, 8], 'pres': [8, 3, 2, 3, 2, 3, 5, 5, 5, 13824, 99553, 41, 377379, 124619, 91, 468244, 1932, 156, 336965, 6925, 163302, 141134, 6750, 13831, 38431]}, 'Perm': {'d': 24, 'gens': [52835712102292482414061, 28207329536281833959824]}}, 'schur_multiplier': [3, 6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 3], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '(C_5\\times C_{15}^2):A_4', 'transitive_degree': 45, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 60, 'aut_gen_orders': [12, 60, 12, 30], 'aut_gens': [[1, 6, 12, 360, 10800], [30689, 5442, 2064, 39780, 4320], [40031, 1260, 17580, 9594, 288], [28075, 14220, 20640, 36114, 144], [5681, 6702, 6042, 41472, 43200]], 'aut_group': None, 'aut_hash': 8717420453910764587, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 648000, 'aut_permdeg': 624, 'aut_perms': [17304275444156185519073872874502670312572835585578676939159751811081215815042650749307228562333108510416516788925754179264679704304830656546918969684816878500994198805971561549792882169898362330793776361547558219471005557457156060171495728566585546446201470047086228316063139507753142385178477843696641754305202091584728813586372511548230523308873277965624579795487269158573042027432795401837105445499484771788763581828820723408300255774039276126663640743082553834549343171276645621278449324876702543445413390016923749580818801922361369717547276488725521934624929373880743598371385999652403573929589276981669865621296832204291215118258597271077331529365664583407954756541349416965442814885901225280050421745526146030120680176866911232493843647955429422297557246193942994077712433617972933538099347833436573442008184389034858349089568871401296854209198380046091673035236856200659469093887231992471021789374994534768368304150640840546772258640217232147159981800226704008808146012881077196857298731701524187277279490519393627488615437143474177829378315430236954951384446778714600274723661052986798120591329760514214214869087288260664512306585736948591739320846923735553004048446602726988969523145563641922479889154438160052226540249253066035175877563821458984462742848746662541038858475628193152799294131286863563821481383928691396701106941267887504277730112072680370464607664160698392407724377396265990418707800087181521437727306749658467939493656614983622241061050000016697105, 4851209965707566455151079786546907403767348601985503389707677104735411717803652547365050647921207025642343871682659228388067441040036316974471594072987779204467746281841215060594315785767126454363614791222033968025561935290795433756519419342747354783090276236912897063368102255914125010836580478965025029411846921882045007087678060065230942796157798321385275293575932096640080140459130573340372164765689037472996529003511989174754698593743836045353426393796531702015178792903712523489338626831989722731818270498270936048927680678382096087415220430550064001292920642601282035552049373978882250527094451860067522327833903717486426803722254645821889184015382386504375213633427546878496260340440547216142624956846723101110072664191424797259877139694659702864656717731239461089440898238786970402908384214410878139727937022967278667648759035098546630622122922884680675983267818617036696595829074838481690906678469621615749419610093723357804360747618333441299793861339980120098292584574760839685049092013019477170818560090219204297519492538518646261684864429524581376895245961043132044809565522970790895286776907984916488327311850538982227120933804469247940237227169384809132365027198449341425828990004166025528716390603428711512988306508447523710662852076441622834270657650865894165175771459707831471441114337255382171986626936431472731680902223501938213270003574510434834499153444920669954102870064866085197487749579535312976732470890913701160599476782595717928608580773953072436, 58179734145709818911432741022717104260597617674289466691665261958331694617839762614941173090958260508631120269656654442382895842323988611798125842481046419204820912409499441144404961947411160216264770937831736656537563704436385358248362814742128856507383074804073778289339671659256204961412636059032809212754662285128920742407890334111305605470475668638729895885792039472432491194435508633571221387988482549122643269846641266677990675439798083301084062111706704688661796558803097708328322618450383073088841684143497045047080814210411744033602924271408306123672043672731818386474117220295111338876413767240337758207753242202669462883477305245065342337605026051556502916807964225375241754518769837288765273294297374847961483071467920403064763167447060558711552727629308536668672866045436412550312090471217105758598160488274240690564001218693071696759369651616841203986111278650481285493737200542018313041744105356929979684690414329585972640130802568121145565871089255549728675764987024411714003390112995465745903744868750846446161439418063562583254728052876253938734672450874580852437473158209807897032881113083023862802266190621789401357833482211321255345802420316678810242742238382716112023996493834793394794947014355183144241612343722376360547276994182572718805705584611064465160404129469311580461989435033637706693938636633677204745463389764775209735497500905513953396031358407992162640203646372069880694571900799194645451054578570774899816326800343132523322399627268194202, 21422329912192239910246229635863223169095550398645878133841856798673314406442572627499473820556234341657201319838464787242180412927332344042945161206324706301840443761764702950806122159197717302908426502314011678062353018902342713939138584998051951339429330695417472511094574240463655274274280256968325889608240252283111465240277583355968303750824556589633102800101553459967721336528774099664166502501578582762588765236268790496239454890491463218485028539220824295609925065958986485956401037509066774076121425452474008766720444564778425329095931377377590095717486535572638026741379073354829128038726681090944825652562045329046134883324205462967206133379375886156322888984703408405142609503541031969260764155336549337766071188427260625858294677850972461059474246767841187985888587449255170230438120773412528838535924916157946899566787734427590675737858511488662022194746623251012993350969853249477230392041992339598593597079015043973751003833009008982409161300744322352561917950331021903346113652616587573257636297521812190820380523606373220587388849261197587717313112910919981297693119324957642776096318156396108420661029258143290522783767751162970150073231035743487035132113411840697053104289943310187078634911954755784200606067193841142297025428107731164791225086623929078820600288592683844626292959461574364945011108859040746068031755505120773445565200662207602069292294337049682482073660293623603194804848203419880496255002655357007172131563233698775771945715112420227264], 'aut_phi_ratio': 45.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 300, 2, 1], [3, 600, 2, 1], [5, 6, 2, 1], [5, 8, 2, 1], [5, 12, 2, 2], [5, 24, 2, 1], [6, 30, 1, 1], [6, 30, 3, 1], [6, 150, 1, 1], [6, 150, 3, 1], [6, 250, 1, 1], [6, 750, 1, 1], [6, 900, 2, 1], [6, 1500, 2, 1], [6, 3000, 2, 1], [6, 4500, 2, 1], [10, 30, 4, 1], [10, 54, 2, 1], [10, 60, 2, 2], [10, 72, 2, 1], [10, 108, 2, 2], [10, 150, 2, 1], [10, 216, 2, 1], [10, 270, 4, 1], [10, 540, 2, 2], [10, 1350, 2, 1], [15, 12, 2, 1], [15, 12, 6, 1], [15, 16, 2, 1], [15, 24, 2, 2], [15, 24, 6, 2], [15, 48, 2, 2], [15, 48, 6, 1], [15, 600, 4, 1], [15, 1200, 4, 1], [30, 60, 4, 1], [30, 60, 12, 1], [30, 120, 2, 2], [30, 120, 6, 2], [30, 300, 2, 1], [30, 300, 6, 1], [30, 1800, 4, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_5^3.C_6^2.(C_4\\times S_3^2)', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': None, 'autcentquo_hash': 8717420453910764587, 'autcentquo_nilpotent': False, 'autcentquo_order': 648000, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_5^3.C_6^2.(C_4\\times S_3^2)', 'cc_stats': [[1, 1, 1], [2, 9, 1], [2, 15, 1], [2, 75, 1], [2, 125, 1], [2, 135, 1], [2, 675, 1], [2, 1125, 1], [3, 2, 1], [3, 6, 1], [3, 300, 2], [3, 600, 2], [5, 6, 2], [5, 8, 2], [5, 12, 4], [5, 24, 2], [6, 30, 4], [6, 150, 4], [6, 250, 1], [6, 750, 1], [6, 900, 2], [6, 1500, 2], [6, 3000, 2], [6, 4500, 2], [10, 30, 4], [10, 54, 2], [10, 60, 4], [10, 72, 2], [10, 108, 4], [10, 150, 2], [10, 216, 2], [10, 270, 4], [10, 540, 4], [10, 1350, 2], [15, 12, 8], [15, 16, 2], [15, 24, 16], [15, 48, 10], [15, 600, 4], [15, 1200, 4], [30, 60, 16], [30, 120, 16], [30, 300, 8], [30, 1800, 4]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '54000.c', 'commutator_count': 1, 'commutator_label': None, 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '5.1', '5.1', '5.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 3, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 300, 2, 1], [3, 600, 2, 1], [5, 6, 2, 1], [5, 8, 2, 1], [5, 12, 2, 2], [5, 24, 2, 1], [6, 30, 1, 4], [6, 150, 1, 4], [6, 250, 1, 1], [6, 750, 1, 1], [6, 900, 2, 1], [6, 1500, 2, 1], [6, 3000, 2, 1], [6, 4500, 2, 1], [10, 30, 2, 2], [10, 54, 2, 1], [10, 60, 2, 2], [10, 72, 2, 1], [10, 108, 2, 2], [10, 150, 2, 1], [10, 216, 2, 1], [10, 270, 2, 2], [10, 540, 2, 2], [10, 1350, 2, 1], [15, 12, 2, 4], [15, 16, 2, 1], [15, 24, 2, 8], [15, 48, 2, 5], [15, 600, 4, 1], [15, 1200, 4, 1], [30, 60, 2, 8], [30, 120, 2, 8], [30, 300, 2, 4], [30, 1800, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 744, 'exponent': 30, 'exponents_of_order': [4, 3, 3], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[12, 1, 24], [24, 1, 24], [48, 1, 8]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '18000.d', 'hash': 7387495986454361018, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 30, 'inner_gen_orders': [6, 2, 30, 30, 5], 'inner_gens': [[1, 3420, 10560, 43506, 288], [7747, 6, 228, 6840, 10800], [7093, 150, 12, 6840, 10800], [43627, 4326, 4332, 360, 43200], [10873, 6, 12, 21960, 10800]], 'inner_hash': 7387495986454361018, 'inner_nilpotent': False, 'inner_order': 54000, 'inner_split': False, 'inner_tex': 'D_5^3:C_3^2:S_3', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 12, 'irrep_stats': [[1, 12], [2, 6], [3, 4], [6, 26], [8, 12], [12, 48], [16, 6], [24, 36], [48, 10]], 'label': '54000.c', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'D5^3:C3^2:S3', 'ngens': 10, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 61, 'number_characteristic_subgroups': 29, 'number_conjugacy_classes': 160, 'number_divisions': 87, 'number_normal_subgroups': 29, 'number_subgroup_autclasses': 1050, 'number_subgroup_classes': 1710, 'number_subgroups': 291198, 'old_label': None, 'order': 54000, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 2159], [3, 1808], [5, 124], [6, 21520], [10, 7716], [15, 8192], [30, 12480]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 3534], 'outer_gens': [[5, 6, 9666, 1872, 10800], [39097, 2238, 6084, 2760, 21600]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 49], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 24, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [3, 4], [4, 2], [6, 10], [12, 8], [16, 2], [24, 24], [32, 3], [48, 18], [64, 1], [96, 5]], 'representations': {'PC': {'code': '531121569954694569393498682229141570344046412924164294722812186829621118540796289700978124348343086521592382600401284825875769852777034758980151804902254663370344223', 'gens': [1, 3, 4, 7, 10], 'pres': [10, 2, 3, 2, 2, 3, 5, 2, 3, 5, 5, 20, 102602, 245802, 422403, 363733, 1543, 113, 516004, 630014, 824, 194, 518405, 324015, 2905, 3045426, 176836, 79826, 39936, 206, 2611207, 144977, 38427, 19237, 317, 3888008, 3258, 129628, 64838, 28809, 108019, 12069]}, 'Perm': {'d': 24, 'gens': [52984131216757424104634, 28207328802774788672943]}}, 'schur_multiplier': [2, 6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'D_5^3:C_3^2:S_3', 'transitive_degree': 45, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}