Subgroup ($H$) information
Description: | $C_3\times C_5^3:C_6$ |
Order: | \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$bd^{15}, e, c^{20}d^{20}, c^{6}e, a^{2}d^{20}, d^{6}e^{4}$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $D_5^3:C_3^2:S_3$ |
Order: | \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^3.C_6^2.(C_4\times S_3^2)$ |
$\operatorname{Aut}(H)$ | $C_5^3.C_{12}^2.C_2^3$ |
$W$ | $C_3\times C_5^3:C_6$, of order \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $8$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $D_5^3:C_3^2:S_3$ |