Properties

Label 54000.c.6.j1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^3:C_3^2$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $d^{15}, c^{15}d^{9}, d^{6}e, c^{20}d^{20}, c^{6}, e, a^{2}d^{20}, bc^{9}d^{15}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $D_5^3:C_3^2:S_3$
Order: \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_4\times S_3^2)$
$\operatorname{Aut}(H)$ $S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$W$$D_5^3:C_3^2$, of order \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$D_5^3:\He_3$
Normal closure:$D_5^3:\He_3$
Core:$C_3\times C_5^3:C_2^3$
Minimal over-subgroups:$D_5^3:\He_3$
Maximal under-subgroups:$C_3\times C_5^3:A_4$$C_3\times C_5^3:C_2^3$$D_5\wr C_3$$C_3\times C_5^3:C_6$$C_6\times A_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3:C_3^2:S_3$