Properties

Label 54000.c.8.b1
Order $ 2 \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times C_{15}^2):C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $bd^{15}, d^{6}e^{4}, d^{20}, c^{20}d^{20}, a^{2}, e, c^{6}e$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $D_5^3:C_3^2:S_3$
Order: \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_4\times S_3^2)$
$\operatorname{Aut}(H)$ $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$W$$C_5^3:C_6\times S_3$, of order \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^2:(C_3\times D_{10})$
Normal closure:$D_5^3:\He_3$
Core:$C_3^2\times C_5^2:D_5$
Minimal over-subgroups:$D_5^3:\He_3$$C_{15}^2:(C_3\times D_{10})$
Maximal under-subgroups:$C_{15}^2:C_{15}$$C_3^2\times C_5^2:D_5$$C_3\times C_5^3:C_6$$C_3\times C_5^3:C_6$$C_{15}^2:C_6$$D_5\times \He_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$D_5^3:C_3^2:S_3$