Properties

Label 540.49.18.b1.b1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_5$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{3}, d^{3}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\He_3:D_{10}$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times C_3^2:\GL(2,3)$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_{15}:D_6$
Normal closure:$C_3^2\times D_5$
Core:$D_5$
Minimal over-subgroups:$C_3^2\times D_5$$S_3\times D_5$
Maximal under-subgroups:$C_{15}$$D_5$$C_6$
Autjugate subgroups:540.49.18.b1.a1540.49.18.b1.c1540.49.18.b1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$\He_3:D_{10}$