Properties

Label 5308416.oh.4096.A
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{12} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3,16,2,18,11)(4,9,6,21,5,24)(7,8,19,10,14,22)(12,17,13,15,23,20)(26,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^{12}.C_6^2:S_3^2$
Order: \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.(C_3^2:D_6\times S_4)$, of order \(10616832\)\(\medspace = 2^{17} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^2:S_3^2$
Normal closure:$C_2^{12}.C_6^2:S_3^2$
Core:$C_2^2$

Other information

Number of subgroups in this autjugacy class$4096$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^{12}.C_6^2:S_3^2$